Skip to main content
Log in

Pesticide and nitrate transport in an agriculturally influenced stream in Indiana

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Agrochemicals can be transported from agricultural fields into streams where they might have adverse effects on water quality and ecosystems. Three enrichment experiments were conducted in a central Indiana stream to quantify pesticide and nitrogen transport dynamics. In an enrichment experiment, a compound solution is added at a constant rate into a stream to increase compound background concentration. A conservative tracer (e.g., bromide) is added to determine discharge. Water and sediment samples are taken at several locations downstream to measure uptake metrics. We assessed transport of nitrate, atrazine, metolachlor, and carbaryl through direct measurement of uptake length (S w ), uptake velocity (V f ), and areal uptake (U). S w measures the distance traveled by a nutrient along the stream reach. V f measures the velocity a nutrient moves from the water column to immobilization sites. U represents the amount of nutrient immobilized in an area of streambed per unit of time. S w varied less than one order of magnitude across pesticides. The highest S w for atrazine suggests greater transport to downstream ecosystems. Across compounds, pesticide S w was longest in August relative to October and July. V f varied less than one order of magnitude across pesticides with the highest V f for metolachlor. U varied three orders of magnitude across pesticides with the highest U associate with sediment-bound carbaryl. Increasing nitrate S w suggests a lower nitrate demand of biota in this stream. Overall, pesticide transport was best predicted by compound solubility which can complement and improve models of pesticide abundance used by water quality programs and risk assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • American Public Health Association. (1995). Standard methods for the examination of water and wastewater. Washington, D.C.: American Public Health Association.

    Google Scholar 

  • Aminot, A., Kirkwood, D. S., & Kerouel, R. (1997). Determination of ammonia in seawater by the indophenol-blue method: evaluation of the ICES NUTS I/C 5 questionnaire. Marine Chemistry, 56, 59–75.

    Article  CAS  Google Scholar 

  • Bacci, E., Renzoni, A., Gaggi, C., Calamari, D., Franchi, A., Vighi, M., & Severi, A. (1989). Models, field studies, laboratory experiments: an integrated approach to evaluate the environmental fate of atrazine (s-triazine herbicide). Agriculture, Ecosystems and Environment, 27(1), 513–522.

    Article  Google Scholar 

  • Balci, B., Oturan, N., Cherrier, R., & Oturan, M. A. (2009). Degradation of atrazine in aqueous medium by electrocatalytically generated hydroxyl radicals. A kinetic and mechanistic study. Water Research, 43(7), 1924–1934.

    Article  CAS  Google Scholar 

  • Battaglin, W. A. (2002) Using ratios of atrazine transformation products to atrazine to determine its source in midwestern streams

  • Bernot, M. J., & Dodds, W. K. (2005). Nitrogen retention, removal, and saturation in lotic ecosystems. Ecosystems, 8(4), 442–453.

    Article  CAS  Google Scholar 

  • Bernot, M. J., Tank, J. L., Royer, T. V., & David, M. B. (2006). Nutrient uptake in streams draining agricultural catchments of the Midwestern United States. Freshwater Biology, 51(3), 499–509.

    Article  CAS  Google Scholar 

  • Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., & De Vries, W. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 20(1), 30–59.

    Article  CAS  Google Scholar 

  • Community Collaborative Rain, Hail and Snow Network (2017) Daily Precipitation Reports. Available at http://www.cocorahs.org/ViewData/ListDailyPrecipReports.aspx (Accessed 8 Feb 2017)

  • Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., & Likens, G. E. (2009). Controlling eutrophication: nitrogen and phosphorus. Science, 323(5917), 1014–1015.

    Article  CAS  Google Scholar 

  • Cope, O. B. (1966) Contamination of the freshwater ecosystem by pesticides. J. Appl. Ecology. 33–44

  • Croghan, C., & Egeghy, P. P. (2003). Methods of dealing with values below the limit of detection using SAS (pp. 22–24). St. Petersburg: Southeastern SAS User Group.

    Google Scholar 

  • Daniels, W. M., House, W. A., Rae, J. E., & Parker, A. (2000). The distribution of micro-organic contaminants in river bed-sediment cores. The Science of the Total Environment, 253(1), 81–92.

    Article  CAS  Google Scholar 

  • Davis, A., & Galloway, J. N. (1993). Distribution of Pb between sediments and pore water in Woods Lake, Adirondack State Park, New York. USA. Appl. Geochemistry, 8(1), 51–65.

    Article  CAS  Google Scholar 

  • Dinnes, D. L., Karlen, D. L., Jaynes, D. B., Kaspar, T. C., Hatfield, J. L., Colvin, T. S., & Cambardella, C. A. (2002). Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils. Agronomy Journal, 94(1), 153–171.

    Article  Google Scholar 

  • Dodds, W. K., Lopez, A. J., Bowden, W. B., Gregory, S., Grimm, N. B., Hamilton, S. K., Hershey, A. E., Marti, E., et al. (2002). N uptake as a function of concentration in streams. Journal of the North American Benthological Society, 21(2), 206–220.

    Article  Google Scholar 

  • Dubrovsky, N. M., Burow, K. R., Clark, G. M., Gronberg, J. M., Hamilton, P. A., & Hitt, K. J., et al. (2010) The quality of our nation’s waters—nutrients in the nation’s streams and groundwater, 1992–2004 (No. 1350). U.S. Geological Survey

  • Duff, J. H., Carpenter, K. D., Snyder, D. T., Lee, K. K., Avanzino, R. J., & Triska, F. J. (2009). Phosphorus and nitrogen legacy in a restoration wetland, Upper Klamath Lake, Oregon. Wetlands, 29(2), 735–746.

    Article  Google Scholar 

  • Elias, D., & Bernot, M. J. (2014). Effects of atrazine, metolachlor, carbaryl and chlorothalonil on benthic microbes and their nutrient dynamics. PloS One, 9(10), e109190.

    Article  Google Scholar 

  • Enserink, M., Hines, P. J., Vignieri, S. N., Wigginton, N. S., & Yeston, J. S. (2013). Smarter pest control. The pesticide paradox. Introduction. Science, 341, 728–729.

    Article  Google Scholar 

  • Fenn, M. E., & Poth, M. A. (1999). Temporal and spatial trends in streamwater nitrate concentrations in the San Bernardino Mountains, southern California. Journal of Environmental Quality, 28(3), 822–836.

    Article  CAS  Google Scholar 

  • Fenner, K., Canonica, S., Wackett, L. P., & Elsner, M. (2013). Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science, 341(6147), 752–758.

    Article  CAS  Google Scholar 

  • Fewtrell, L. (2004). Drinking-water nitrate, methemoglobinemia, and global burden of disease: a discussion. Environ. Health Perspect 1371–1374.

  • Finizio, A., Mackay, D., Bidleman, T., & Harner, T. (1997). Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols. Atmospheric Environment, 31(15), 2289–2296.

    Article  CAS  Google Scholar 

  • Gamble, D. S. (2009). Herbicide sorption by immersed soils: stoichiometry and the law of mass action in support of predictive kinetics. Environmental Science & Technology, 43(6), 1930–1934.

    Article  CAS  Google Scholar 

  • Gavrilescu, M. (2005). Fate of pesticides in the environment and its bioremediation. Engineering in Life Sciences, 5(6), 497–526.

    Article  CAS  Google Scholar 

  • Gerland, P., Raftery, A. E., Ševčíková, H., Li, H. N., Gu, D., Spoorenberg, T., & Wilmoth, J. (2014). World population stabilization unlikely this century. Science, 346(6206), 234–237.

    Article  CAS  Google Scholar 

  • Gilliom, R. J. (2007). Pesticides in US streams and groundwater. Environmental Science & Technology, 41(10), 3408–3414.

    Article  CAS  Google Scholar 

  • Graves, R. L. (1989) Method 531.1 Measurement of n-methylcarbamoyloximes and n-methylcarbamates in water by direct aqueous injection HPLC with post column derivatization. U.S. Environmental Protection Agency. Available at http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/2007_11_06_methods_method_531_1.pdf Accessed 19 Aug 2015

  • Gregory, S. V. (1980) Effects of light, nutrients, and grazing on periphyton communities in streams

  • Grimm, N. B. (1987). Nitrogen dynamics during succession in a desert stream. Ecology, 68, 1157–1170.

    Article  CAS  Google Scholar 

  • Grube, A., Donaldson, D., Kiely, T., & Wu, L. (2011) Pesticides industry sales and usage. U.S. Environmental Protection Agency

  • Gunasekara, A. S., Rubin, A. L., Goh, K. S., Spurlock, F. C., & Tjeerdema, R. S. (2008). Environmental fate and toxicology of carbaryl. Environ. Contam. Toxicol, 196, 95–121.

    CAS  Google Scholar 

  • Gustafson, D. I. (1989). Groundwater ubiquity score: a simple method for assessing pesticide leachability. Environmental Toxicology and Chemistry, 8(4), 339–357.

    Article  CAS  Google Scholar 

  • Hall Jr., R., & Tank, J. L. (2003). Ecosystem metabolism controls nitrogen uptake in streams in Grand Teton National Park. Wyoming. Limnol. Oceanogr, 48(3), 1120–1128.

    Article  CAS  Google Scholar 

  • Hayes, T. B. (2001) Atrazine contamination in water and the impact on amphibian populations: a bioassay that measures water quality. In AGU Fall Meeting Abstracts (Vol. 1, p. 0363)

  • Helsel, D. R. (2005). Nondetects and data analysis. New York: John Wiley and Sons.

    Google Scholar 

  • Johnson, L. T., Tank, J. L., & Arango, C. P. (2009). The effect of land use on dissolved organic carbon and nitrogen uptake in streams. Freshwater Biology, 54(11), 2335–2350.

    Article  CAS  Google Scholar 

  • Johnson, Z. C., Warwick, J. J., & Schumer, R. (2015). Nitrogen retention in the main channel and two transient storage zones during nutrient addition experiments. Limnology and Oceanography, 60(1), 57–77.

    Article  CAS  Google Scholar 

  • Jordan, M. J., Nadelhoffer, K. J., & Fry, B. (1997). Nitrogen cycling in forest and grass ecosystems irrigated with 15N-enriched wastewater. Ecological Applications, 7(3), 864–881.

    Google Scholar 

  • Katagi, T. (2006) Behavior of pesticides in water-sediment systems. In Reviews of Environ. Contam. Toxicol. 133–251

  • Kawamoto, K., & Urano, K. (1989). Parameters for predicting fate of organochlorine pesticides in the environment (I) octanol-water and air-water partition coefficients. Chemosphere, 18(9), 1987–1996.

    Article  CAS  Google Scholar 

  • Knobeloch, L., Salna, B., Hogan, A., Postle, J., & Anderson, H. (2000). Blue babies and nitrate-contaminated well water. Environmental Health Perspectives, 108(7), 675.

    Article  CAS  Google Scholar 

  • Kolpin, D. W., Barbash, J. E., & Gilliom, R. J. (1998). Occurrence of pesticides in shallow groundwater of the United States: Initial results from the National Water-Quality Assessment Program. Environ. Science Technol, 32(5), 558–566.

    Article  CAS  Google Scholar 

  • Kruger, E. L., Coats, J. R., & Zhu, B. E. (1996). Relative mobilities of atrazine, five atrazine degradates, metolachlor, and simazine in soils of Iowa. Environmental Toxicology and Chemistry, 15(5), 691–695.

    Article  CAS  Google Scholar 

  • Kuivila, K. M., & Foe, C. G. (1995). Concentrations, transport and biological effects of dormant spray pesticides in the San-Francisco estuary, California. Environmental Toxicology and Chemistry, 14(7), 1141–1150.

    Article  CAS  Google Scholar 

  • Kuzyakov, Y., & Xu, X. (2013). Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. The New Phytologist, 198(3), 656–669.

    Article  CAS  Google Scholar 

  • Kwon, J. W., & Armbrust, K. L. (2006). Degradation of chlorothalonil in irradiated water/sediment systems. Journal of Agricultural and Food Chemistry, 54, 3651–3657.

    Article  CAS  Google Scholar 

  • Larson, S. J., Gilliom, R. J. & Capel, P. D. (1999) Pesticides in streams of the United States—initial results from the national Water-Quality Assessment Program: U.S. Department of the Interior, U.S. Geological Survey

  • Leavesley, G. H., Lichty, R. W., Thoutman, B. M., & Saindon, L. G. (1983). Precipitation-runoff modeling system: User's manual (p. 207). Washington: USGS.

    Google Scholar 

  • Li, C. C., Huo, S. L., Xi, B. D., Yu, Z. Q., Zeng, X. Y., Zhang, J. T., & Liu, H. L. (2015). Historical deposition behaviors of organochlorine pesticides (OCPs) in the sediments of a shallow eutrophic lake in eastern China: roles of the sources and sedimentological conditions. Ecological Indicators, 53, 1–10.

    Article  Google Scholar 

  • Linde, C. D. (1994) Physicochemical properties and environmental fate of pesticides. Environmental hazards assessment program. U.S. Environmental Protection Agency:53

  • Mulholland, P.J., Tank, J.L., Sanzone, D.M., Webster, J.R., Wollheim, W., Peterson, B.J. and Meyer, J.L. (1998) Ammonium and nitrate uptake lengths in a small forested stream determined by 15N tracer and short-term nutrient enrichment experiments (No. ORNL/CP--99394; CONF-980848--). Oak Ridge National Lab., TN (United States)

  • Mulholland, P. J., Tank, J. L., Webster, J. R., Bowden, W. B., Dodds, W. K., Gregory, S. V., et al. (2002). Can uptake length in streams be determined by nutrient addition experiments? Results from an interbiome comparison study. Journal of the North American Benthological Society, 21(4), 544–560.

    Article  Google Scholar 

  • Mulholland, P. J., et al. (2008). Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature, 452(7184), 202–205.

    Article  CAS  Google Scholar 

  • Munch, J. W. (1995). Method 525.2 Determination of organic compounds in drinking water by liquid-solid extraction and capillary column gas chromatography/mass spectrometry. U.S. Environmental Protection Agency. Available at http://water.epa.gov/scitech/methods/cwa/upload/525_2-SOCs.pdf (Accessed 19 Aug 2015

  • National Oceanic Atmospheric Administration. (2017). Quality Controlled Local Climatological Data. Available at https://www.ncdc.noaa.gov/qclcd/QCLCD (Accessed February 8th, 2017).

  • National Research Council U.S. (2014). A framework to guide selection of chemical alternatives. Washington, D.C.: The National Academies Press. Available at http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=907909 (Accessed October 30, 2015).

  • Neumann, M., Schulz, R., Schäfer, K., Müller, W., Mannheller, W., & Liess, M. (2002). The significance of entry routes as point and non-point sources of pesticides in small streams. Water Research, 36(4), 835–842.

    Article  CAS  Google Scholar 

  • Newbold, J. D., O'neill, R. V., Elwood, J. W., & Van Winkle, W. (1982). Nutrient spiraling in streams: implications for nutrient limitation and invertebrate activity. Amer. Nat, 628-652.

  • Nowell, L. H., Capel, P. D. & Dileanis, P. D. (2010). Pesticides in stream sediment and aquatic biota: distribution, trends, and governing factors. Boca Raton, FL: Lewis Publishers.

  • O'Brien, J. M., & Dodds, W. K. (2010). Saturation of NO3− uptake in prairie streams as a function of acute and chronic N exposure. Journal of the North American Benthological Society, 29(2), 627–635.

    Article  Google Scholar 

  • Peterson, B. J., Wollheim, W. M., Mulholland, P. J., Webster, J. R., Meyer, J. L., Tank, J. L., & Morrall, D. D. (2001). Control of nitrogen export from watersheds by headwater streams. Science, 29,2(5514), 86–90.

    Article  Google Scholar 

  • Roley, S. S., Tank, J. L., Stephen, M. L., Johnson, L. T., Beaulieu, J. J., & Witter, J. D. (2012). Floodplain restoration enhances denitrification and reach-scale nitrogen removal in an agricultural stream. Ecological Applications, 2012 22(1), 281–297.

    Article  Google Scholar 

  • Sabljic, A. (2001). QSAR models for estimating properties of persistent organic pollutants required in evaluation of their environmental fate and risk. Chemosphere, 43(3), 363–375.

    Article  CAS  Google Scholar 

  • Schade, J. D., Seybold, E. C., Drake, T., Spawn, S., Sobczak, W. V., Frey, K. E., ... & Zimov, N. (2016). Variation in summer nitrogen and phosphorus uptake among Siberian headwater streams. Polar Res 35.

  • Schulz, R. (2004). Field studies on exposure, effects, and risk mitigation of aquatic nonpoint-source insecticide pollution. Journal of Environmental Quality, 33(2), 419–448.

    Article  CAS  Google Scholar 

  • Sharratt, B., Sander, K., & Tierney, D. (2003). Fate of autumn applied metolachlor in a clay loam in the northern U.S. Corn Belt. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 38, 37–48.

    Article  Google Scholar 

  • Smiley Jr., P. C., King, K. W., & Fausey, N. R. (2014). Annual and seasonal differences in pesticide mixtures within channelized agricultural headwater streams in central Ohio. Agriculture, Ecosystems and Environment, 193, 83–95.

    Article  CAS  Google Scholar 

  • Stackelberg, P. E., Furlong, E. T., Meyer, M. T., Zaugg, S. D., Henderson, A. K., & Reissman, D. B. (2004). Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. The Science of the Total Environment, 329(1), 99–113.

    Article  CAS  Google Scholar 

  • Stone, W. W., Crawford, C. G., & Gilliom, R. J. (2013). Watershed regressions for pesticides WARP models for predicting stream concentrations of multiple pesticides. Journal of Environmental Quality, 42, 1838–1851.

    Article  CAS  Google Scholar 

  • Sullivan, D. J., Vecchia, A. V., Lorenz, D. L., Gilliom, R. J., & Martin, J. D. (2009). Trends in pesticide concentrations in corn-belt streams, 1996–2006. U.S. Geological Survey.

  • Tank, J. L., Bernot, M. J., & Rosi-Marshall, E. J. (2006). Nitrogen limitation and uptake. Methods in stream ecology (pp. 213–238). San Diego: Academic Press.

    Google Scholar 

  • Toccalino, P. L., Gilliom, R. J., Lindsey, B. D. & Rupert, M. G. (2014). Pesticides in groundwater of the United States: Decadal-scale changes (1993 - 2011). Ground water 52 Suppl, 1(S1), 112–125.

  • U.S. Census Bureau. (2015). 2014 National Population Projections. Available at: https://www.census.gov/population/projections/data/national/2014.html (Accessed 12 June 2015).

  • U.S. Environmental Protection Agency. (2007). Method 3550C Ultrasonic extraction. Available at: http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/3550c.pdf (Accessed August 19, 2015).

  • Wauchope, R. D., & Leonard, R. A. (1978). Maximum pesticide concentrations in agricultural runoff: a semiempirical prediction formula. Journal of Environmental Quality, 9(4), 665–672.

    Article  Google Scholar 

  • Wauchope, R. D., Buttler, T., Hornsby, A., Augustijn-Beckers, P., & Burt, J. A. (1992). The SCS/ARS/CES pesticide properties database for environmental decision-making. Reviews of Environ. Contam. Toxicol, 1–155.

  • Wauchope, R. D., Yeh, S., Linders, J. B., Kloskowski, R., Tanaka, K., Rubin, B., Katayama, A., Kordel, W., Gerstl, Z., & Lane, M. (2002). Pesticide soil sorption parameters: theory, measurement, uses, limitations and reliability. Pest Management Science, 58(5), 419–445.

    Article  CAS  Google Scholar 

  • Webster, J. R., Mulholland, P. J., Tank, J. L., Valett, H. M., Dodds, W. K., Peterson, B. J., et al. (2003). Factors affecting ammonium uptake in streams—an inter-biome perspective. Freshwater Biology, 48(8), 1329–1352.

    Article  CAS  Google Scholar 

  • White River Watershed Project. (2010). Background information. Available at http://whiteriverwatershedproject.org/ (Accessed August 21, 2014).

  • Wijekoon, K. C., Hai, F. I., Kang, J., Price, W. E., Guo, W., Ngo, H. H., & Nghiem, L. D. (2013). The fate of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters and pesticides during MBR treatment. Bioresource Technology, 144, 247–254.

    Article  CAS  Google Scholar 

  • Wilson, C., Albano, J., Mozdzen, M., & Riiska, C. (2010). Irrigation water and nitrate-nitrogen loss characterization in Southern Florida nurseries: cumulative volumes, runoff rates, nitrate-nitrogen concentrations and loadings, and implications for management. HortTechnology, 20(2), 325–330.

    CAS  Google Scholar 

  • Workshop, S. S. (1990). Concepts and methods for assessing solute dynamics in stream ecosystems. Journal of the North American Benthological Society, 9(2), 95–119.

    Article  Google Scholar 

  • Yang, Y. Y., Toor, G. S., & Williams, C. F. (2015). Pharmaceuticals and organochlorine pesticides in sediments of an urban river in Florida, U.S. J. Soils Sediments, 15(4), 993–1004.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Indiana Water Resources Research Consortium and Ball State Aspire Grant for funding and Patrick Ferguson, Ben England, Ann Raffel, Rob Osborne, James Justice, and Lindy Caffo for field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Elias.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elias, D., Bernot, M.J. Pesticide and nitrate transport in an agriculturally influenced stream in Indiana. Environ Monit Assess 189, 162 (2017). https://doi.org/10.1007/s10661-017-5870-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5870-1

Keywords

Navigation