Skip to main content

Advertisement

Log in

Assessment of spatial distribution of soil heavy metals using ANN-GA, MSLR and satellite imagery

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

An Erratum to this article was published on 24 May 2017

Abstract

This study aims to assess and compare heavy metal distribution models developed using stepwise multiple linear regression (MSLR) and neural network-genetic algorithm model (ANN-GA) based on satellite imagery. The source identification of heavy metals was also explored using local Moran index. Soil samples (n = 300) were collected based on a grid and pH, organic matter, clay, iron oxide contents cadmium (Cd), lead (Pb) and zinc (Zn) concentrations were determined for each sample. Visible/near-infrared reflectance (VNIR) within the electromagnetic ranges of satellite imagery was applied to estimate heavy metal concentrations in the soil using MSLR and ANN-GA models. The models were evaluated and ANN-GA model demonstrated higher accuracy, and the autocorrelation results showed higher significant clusters of heavy metals around the industrial zone. The higher concentration of Cd, Pb and Zn was noted under industrial lands and irrigation farming in comparison to barren and dryland farming. Accumulation of industrial wastes in roads and streams was identified as main sources of pollution, and the concentration of soil heavy metals was reduced by increasing the distance from these sources. In comparison to MLSR, ANN-GA provided a more accurate indirect assessment of heavy metal concentrations in highly polluted soils. The clustering analysis provided reliable information about the spatial distribution of soil heavy metals and their sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alam, N., Ahmad, S. R., Qadir, A., Ashraf, M. I., Lakhan, C., & Lakhan, V. C. (2015). Use of statistical and GIS techniques to assess and predict concentrations of heavy metals in soils of Lahore City, Pakistan. Environmental Monitoring and Assessment, 187(10), 1–11. doi:10.1007/s10661-015-4855-1.

    Article  CAS  Google Scholar 

  • Alyazichi, Y. M., Jones, B. G., & McLean, E. (2015). Source identification and assessment of sediment contamination of trace metals in Kogarah Bay, NSW, Australia. Environmental Monitoring and Assessment, 187(2), 1–10. doi:10.1007/s10661-014-4238-z.

    Article  CAS  Google Scholar 

  • Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2), 93–115.

    Article  Google Scholar 

  • Asami, T. (1984). Pollution of soils by cadmium. In Changing metal cycles and human health (pp. 95–111). New York: Springer Berlin Heidelberg.

    Chapter  Google Scholar 

  • Askari, M. S., O’Rourke, S. M., & Holden, N. M. (2015). Evaluation of soil quality for agricultural production using visible–near-infrared spectroscopy. Geoderma, 243–244, 80–91. doi:10.1016/j.geoderma.2014.12.012.

    Article  Google Scholar 

  • Asmaryan, S. G., Muradyan, V., Sahakyan, L., Saghatelyan, A., & Warner, T. (2014). Development of remote sensing methods for assessing and mapping soil pollution with heavy metals. Global Soil Map: Basis of the global spatial soil information system, 429.

  • Atafar, Z., Mesdaghinia, A., Nouri, J., Homaee, M., Yunesian, M., Ahmadimoghaddam, M., et al. (2010). Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment, 160(1–4), 83–89. doi:10.1007/s10661-008-0659-x.

    Article  CAS  Google Scholar 

  • Bien, J. D., ter Meer, J., Rulkens, W. H., & Rijnaarts, H. H. M. (2005). A GIS-based approach for the long-term prediction of human health risks at contaminated sites. Environmental Monitoring and Assessment, 9(4), 221–226. doi:10.1007/s10666-005-0909-z.

    Article  Google Scholar 

  • Boszke, L., & Astel, A. (2009). Application of neural-based modeling in an assessment of pollution with mercury in the middle part of the Warta River. Environmental Monitoring and Assessment, 152(1), 133–147. doi:10.1007/s10661-008-0302-x.

    Article  CAS  Google Scholar 

  • Cai, L., Xu, Z., Ren, M., Guo, Q., Hu, X., Hu, G., et al. (2012). Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicology and Environmental Safety, 78, 2–8. doi:10.1016/j.ecoenv.2011.07.004.

    Article  CAS  Google Scholar 

  • Chang, C. L., Lo, S. L., & Yu, S. L. (2006). The parameter optimization in the inverse distance method by genetic algorithm for estimating precipitation. Environmental Monitoring and Assessment, 117(1), 145–155. doi:10.1007/s10661-006-8498-0.

    Article  Google Scholar 

  • Chen, X., Xia, X., Zhao, Y., & Zhang, P. (2010). Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. Journal of Hazardous Materials, 181(1–3), 640–646. doi:10.1016/j.jhazmat.2010.05.060.

    Article  CAS  Google Scholar 

  • Chen, Y., Liu, Y., Liu, Y., Lin, A., Kong, X., Liu, D., et al. (2012). Mapping of Cu and Pb contaminations in soil using combined geochemistry, topography, and remote sensing: a case study in the Le'an River floodplain, China. International Journal of Environmental Research and Public Health, 9(5), 1874–1886. doi:10.3390/ijerph9051874.

    Article  CAS  Google Scholar 

  • Choe, E., van der Meer, F., van Ruitenbeek, F., van der Werff, H., de Smeth, B., & Kim, K. W. (2008). Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: a case study of the Rodalquilar mining area, SE Spain. Remote Sensing of Environment, 112(7), 3222–3233. doi:10.1016/j.rse.2008.03.017.

    Article  Google Scholar 

  • Connan, O., Maro, D., Hébert, D., Roupsard, P., Goujon, R., Letellier, B., et al. (2013). Wet and dry deposition of particles associated metals (Cd, Pb, Zn, Ni, Hg) in a rural wetland site, Marais Vernier, France. Atmospheric Environment, 67, 394–403. doi:10.1016/j.atmosenv.2012.11.029.

    Article  CAS  Google Scholar 

  • Cook, N. J., Ciobanu, C. L., Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., et al. (2009). Trace and minor elements in sphalerite: a LA-ICPMS study. Geochimica et Cosmochimica Acta, 73(16), 4761–4791. doi:10.1016/j.gca.2009.05.045.

    Article  CAS  Google Scholar 

  • Cope, C. C., Becker, M. F., Andrews, W. J., & DeHay, K. (2008). Streamflow, water quality, and metal loads from chat leachate and mine outflow into Tar Creek, Ottawa County, Oklahoma, U. S. Geological Survey, Scientific Investigations Report 2007–5115.

  • Department of Environment, Islamic Republic of Iran. (2013). Soil resources quality standards and its directions.162 pp.

  • Dore, A. J., Hallsworth, S., McDonald, A. G., Werner, M., Kryza, M., Abbot, J., et al. (2014). Quantifying missing annual emission sources of heavy metals in the United Kingdom with an atmospheric transport model. Science of the Total Environment, 479–480(0), 171–180. doi:10.1016/j.scitotenv.2014.02.001.

    Article  Google Scholar 

  • Dube, A., Zbytniewski, R., Kowalkowski, T., Cukrowska, E., & Buszewski, B. (2001). Adsorption and migration of heavy metals in soil. Polish Journal of Environmental Studies, 10(1), 1–10.

    CAS  Google Scholar 

  • Farahmandkia, Z., Mehrasbi, M., & Sekhavatjou, M. (2011). Relationship between concentrations of heavy metals in wet precipitation and atmospheric PM10 particles in Zanjan. Iranian Journal of Environmental Health Science & Engineering, 8(1), 49–56.

    CAS  Google Scholar 

  • Fu, W., Zhao, K., Zhang, C., & Tunney, H. (2011). Using Moran’s I and geostatistics to identify spatial patterns of soil nutrients in two different long-term phosphorus application plots. Journal of Plant Nutrition and Soil Science, 174(5), 785–798. doi:10.1002/jpln.201000422.

    Article  CAS  Google Scholar 

  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92(3), 407–418. doi:10.1016/j.jenvman.2010.11.011.

    Article  CAS  Google Scholar 

  • Gannouni, S., Rebai, N., & Abdeljaoued, S. (2012). A spectroscopic approach to assess heavy metals contents of the mine waste of Jalta and Bougrine in the north of Tunisia. Journal of Geographic Information System, 4(3), 242–253. doi:10.4236/jgis.2012.43029.

    Article  Google Scholar 

  • Gee, G. W., Bauder, J. W., & Klute, A. (1986). Particle-size analysis. Methods of soil analysis. Part 1. Physical and mineralogical methods, 383–411.

  • Getis, A., & Ord, J. K. (1992). The analysis of spatial association by use of distance statistics. Geographical Analysis, 24(3), 189–206. doi:10.1111/j.1538-4632.1992.tb00261.x.

    Article  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2011). Cadmium stress tolerance in crop plants: probing the role of sulfur. Plant Signaling & Behavior, 6(2), 215–222. doi:10.4161/psb.6.2.14880.

    Article  CAS  Google Scholar 

  • Guala, S. D., Vega, F. A., & Covelo, E. F. (2010). The dynamics of heavy metals in plant–soil interactions. Ecological Modelling, 221(8), 1148–1152. doi:10.1016/j.ecolmodel.2010.01.003.

    Article  CAS  Google Scholar 

  • Hani, A., & Pazira, E. (2011). Heavy metals assessment and identification of their sources in agricultural soils of Southern Tehran, Iran. Environmental Monitoring and Assessment, 176(1–4), 677–691. doi:10.1007/s10661-010-1612-3.

    Article  CAS  Google Scholar 

  • Hong-Yan, R. E. N., Zhuang, D. F., Singh, A. N., Jian-Jun, P. A. N., Dong-Sheng, Q. I. U., & Run-He, S. H. I. (2009). Estimation of As and Cu contamination in agricultural soils around a mining area by reflectance spectroscopy: a case study. Pedosphere, 19(6), 719–726. doi:10.1016/S1002-0160(09) 60167-3.

    Article  Google Scholar 

  • Icaga, Y. (2005). Genetic algorithm usage in water quality monitoring networks optimization in Gediz (Turkey) river basin. Environmental Monitoring and Assessment, 108(1), 261–277. doi:10.1007/s10661-005-4328-z.

    Article  CAS  Google Scholar 

  • Ishioka, F., Kurihara, K., Suito, H., Horikawa, Y., & Ono, Y. (2007). Detection of hotspots for three-dimensional spatial data and its application to environmental pollution data. Journal of Environmental Science for Sustainable Society, 1, 15–24. doi:10.3107/jesss.1.15.

    Article  Google Scholar 

  • Jarmer, T., Vohland, M., Lilienthal, H., & Schnug, E. (2008). Estimation of some chemical properties of an agricultural soil by spectroradiometric measurements. Pedosphere, 18(2), 163–170. doi:10.1016/S1002-0160(08)60004-1.

    Article  Google Scholar 

  • Jiao, W., Chen, W., Chang, A. C., & Page, A. L. (2012). Environmental risks of trace elements associated with long term phosphate fertilizers applications: a review. Environmental Pollution, 168(0), 44–53. doi:10.1016/j.envpol.2012.03.052.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2010). Trace elements in soils and plants. USA: CRC press.

    Book  Google Scholar 

  • Kaiser, M., Aboulela, H., El Serehy, H., & Ezz Edin, H. (2010). Spectral enhancement of SPOT imagery data to assess marine pollution near Port Said, Egypt. International Journal of Remote Sensing, 31(7), 1753–1764. doi:10.1080/01431160902926624.

    Article  Google Scholar 

  • Kemper, T., & Sommer, S. (2002). Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environmental Science & Technology, 36(12), 2742–2747. doi:10.1021/es015747j.

    Article  CAS  Google Scholar 

  • Lasaponara, R., Leucci, G., Masini, N., Persico, R., & Scardozzi, G. (2016). Towards an operative use of remote sensing for exploring the past using satellite data: the case study of Hierapolis (Turkey). Remote Sensing of Environment, 174, 148–164. doi:10.1016/j.rse.2015.12.016.

    Article  Google Scholar 

  • Liu, D., Wang, Z., Zhang, B., Song, K., Li, X., Li, J., et al. (2006a). Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China. Agriculture, Ecosystems & Environment, 113(1–4), 73–81. doi:10.1016/j.agee.2005.09.006.

    Article  CAS  Google Scholar 

  • Liu, X., Wu, J., & Xu, J. (2006b). Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS. Environmental Pollution, 141(2), 257–264. doi:10.1016/j.envpol.2005.08.048.

    Article  CAS  Google Scholar 

  • Liu, Y., Lv, J., Zhang, B., & Bi, J. (2013). Spatial multiscale variability of soil nutrients in relation to environmental factors in a typical agricultural region, Eastern China. Science of the Total Environment, 450–451, 108–119. doi:10.1016/j.scitotenv.2013.01.083.

    Article  Google Scholar 

  • Mance, G., & Worsfold, P. (1988). Pollution threat of heavy metals in aquatic environments. London: Elsevier 372 pp.

    Google Scholar 

  • Mehra, O., & Jackson, M. (1958). Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. In: National conference on clays and clays minerals, 7: 317–327.

  • Meindl, G. A., Bain, D. J., & Ashman, T. L. (2014). Nickel accumulation in leaves, floral organs and rewards varies by serpentine soil affinity. AoB Plants, 6(plu036). doi:10.1093/aobpla/plu036.

  • Miao, Q., Liu, R., Wang, Y., Song, J., Quan, Y., & Li, Y. (2015). Remote sensing image fusion based on shearlet and genetic algorithm. In Bio-Inspired Computing-Theories and Applications (pp. 283–294). New York: Springer Berlin Heidelberg.

    Chapter  Google Scholar 

  • Moore, F., Sheykhi, V., Salari, M., & Bagheri, A. (2016). Soil quality assessment using GIS-based chemometric approach and pollution indices: Nakhlak mining district, Central Iran. Environmental Monitoring and Assessment, 188(4), 1–16. doi:10.1007/s10661-016-5152-3.

    Article  CAS  Google Scholar 

  • Moros, J., de Vallejuelo, S. F. O., Gredilla, A., de Diego, A., Madariaga, J. M., Garrigues, S., et al. (2009). Use of reflectance infrared spectroscopy for monitoring the metal content of the estuarine sediments of the Nerbioi-Ibaizabal River (Metropolitan Bilbao, Bay of Biscay, Basque Country). Environmental Science & Technology, 43(24), 9314–9320. doi:10.1021/es9005898.

    Article  CAS  Google Scholar 

  • Overmars, K. P., de Koning, G. H. J., & Veldkamp, A. (2003). Spatial autocorrelation in multi-scale land use models. Ecological Modelling, 164(2–3), 257–270. doi:10.1016/S0304-3800(03)00070-X.

    Article  Google Scholar 

  • Pourjabbar, A., Sârbu, C., Kostarelos, K., Einax, J. W., & Büchel, G. (2014). Fuzzy hierarchical cross-clustering of data from aBandoned mine site contaminated with heavy metals. Computers & Geosciences, 72(0), 122–133. doi:10.1016/j.cageo.2014.07.004.

    Article  CAS  Google Scholar 

  • Qi, J., Zhang, H., Li, X., & Zhang, G. (2016). Concentrations, spatial distribution, and risk assessment of soil heavy metals in a Zn-Pb mine district in southern China. Environmental Monitoring and Assessment, 188(7), 1–11. doi:10.1007/s10661-016-5406-0.

    Article  CAS  Google Scholar 

  • Schaider, L. A., Senn, D. B., Estes, E. R., Brabander, D. J., & Shine, J. P. (2014). Sources and fates of heavy metals in a mining impacted stream: temporal variability and the role of iron oxides. Science of the Total Environment, 490, 456–466. doi:10.1016/j.scitotenv.2014.04.126.

    Article  CAS  Google Scholar 

  • Şenkal, O. (2010). Modeling of solar radiation using remote sensing and artificial neural network in Turkey. Energy, 35(12), 4795–4801. doi:10.1016/j.energy.2010.09.009.

    Article  Google Scholar 

  • Shahbazi, Y., Ahmadi, F., & Fakhari, F. (2016). Voltammetric determination of Pb, Cd, Zn, Cu and Se in milk and dairy products collected from Iran: an emphasis on permissible limits and risk assessment of exposure to heavy metals. Food Chemistry, 192, 1060–1067. doi:10.1016/j.foodchem.2015.07.123.

    Article  CAS  Google Scholar 

  • Shi, T., Chen, Y., Liu, Y., & Wu, G. (2014). Visible and near infrared reflectance spectroscopy-an alternative for monitoring soil contamination by heavy metals. Journal of Hazardous Materials, 265, 166–176. doi:10.1016/j.jhazmat.2013.11.059.

    Article  CAS  Google Scholar 

  • Slonecker, T., Fisher, G. B., Aiello, D. P., & Haack, B. (2010). Visible and infrared remote imaging of hazardous waste: a review. Remote Sensing, 2(11), 2474–2508. doi:10.3390/rs2112474.

    Article  Google Scholar 

  • Song, L., Jian, J., Tan, D. J., Xie, H. B., Luo, Z. F., & Gao, B. (2015). Estimate of heavy metals in soil and streams using combined geochemistry and field spectroscopy in Wan-sheng mining area, Chongqing, China. International Journal of Applied Earth Observation and Geoinformation, 34, 1–9. doi:10.1016/j.jag.2014.06.013.

    Article  CAS  Google Scholar 

  • Sun, C., Liu, J., Wang, Y., Sun, L., & Yu, H. (2013). Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemosphere, 92(5), 517–523. doi:10.1016/j.chemosphere.2013.02.063.

    Article  CAS  Google Scholar 

  • Templ, M., Filzmoser, P., & Reimann, C. (2008). Cluster analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry, 23(8), 2198–2213. doi:10.1016/j.apgeochem.2008.03.004.

    Article  CAS  Google Scholar 

  • Thenkabail, P. S., Lyon, J. G., & Huete, A. (2011). Hyperspectral remote sensing of vegetation. New York: CRC Press.

    Book  Google Scholar 

  • Tsoukalas, V., & Fragiadakis, N. (2016). Prediction of occupational risk in the shipbuilding industry using multivariable linear regression and genetic algorithm analysis. Safety Science, 83, 12–22. doi:10.1016/j.ssci.2015.11.010.

    Article  Google Scholar 

  • Walky, A., & Black, I. (1934). An examination of the Degtiareff method for deteming soil organic matter and proposed modification of the chromic acid titration method. Soil Science, 63, 29–38.

    Article  Google Scholar 

  • Wang, H., Dong, Y., Yang, Y., Toor, G. S., & Zhang, X. (2013). Changes in heavy metal contents in animal feeds and manures in an intensive animal production region of China. Journal of Environmental Sciences, 25(12), 2435–2442. doi:10.1016/S1001-0742(13)60473-8.

    Article  CAS  Google Scholar 

  • Wang, J., Cui, L., Gao, W., Shi, T., Chen, Y., & Gao, Y. (2014). Prediction of low heavy metal concentrations in agricultural soils using visible and near infrared reflectance spectroscopy. Geoderma, 216(0), 1–9. doi:10.1016/j.geoderma.2013.10.024.

    Article  Google Scholar 

  • Werkenthin, M., Kluge, B., & Wessolek, G. (2014). Metals in European roadside soils and soil solution--a review. Environmental Pollution, 189, 98–110. doi:10.1016/j.envpol.2014.02.025.

    Article  CAS  Google Scholar 

  • Wiseman, C. L., Zereini, F., & Puttmann, W. (2013). Traffic related trace element fate and uptake by plants cultivated in roadside soils in Toronto, Canada. Science of the Total Environment, 442, 86–95. doi:10.1016/j.scitotenv.2012.10.051.

    Article  CAS  Google Scholar 

  • Wu, L., Wang, Y., Long, J., & Liu, Z. (2015). An unsupervised change detection approach for remote sensing image using principal component analysis and genetic algorithm. In Image and graphics (pp. 589–602). New York City: Springer International Publishing.

    Chapter  Google Scholar 

  • Wu, Y., Chen, J., Ji, J., Gong, P., Liao, Q., Tian, Q., et al. (2007). A mechanism study of reflectance spectroscopy for investigating heavy metals in soils. Soil Science Society of America Journal, 71(3), 918–926. doi:10.2136/sssaj2006.0285.

    Article  CAS  Google Scholar 

  • Xia, X., Chen, J., Ma, H., & Ji, J. (2006). Assessment of cadmium contamination in the sediments of Changjiang (Yangtze) River by reflectance spectroscopy. Chinese Journal of Geochemistry, 25(1), 226–226. doi:10.1007/bf02840182.

    Article  Google Scholar 

  • Xiao, Z., Liang, S., Wang, J., Chen, P., Yin, X., Zhang, L., et al. (2014). Use of general regression neural networks for generating the GLASS leaf area index product from time-series MODIS surface reflectance. Geoscience and Remote Sensing, IEEE Transactions on, 52(1), 209–223. doi:10.1109/TGRS.2013.2237780.

    Article  Google Scholar 

  • Yan, X., Gao, D., Zhang, F., Zeng, C., Xiang, W., & Zhang, M. (2013a). Relationships between heavy metal concentrations in roadside topsoil and distance to road edge based on field observations in the Qinghai-Tibet Plateau, China. International Journal of Environmental Research and Public Health, 10(3), 762–775. doi:10.3390/ijerph10030762.

    Article  CAS  Google Scholar 

  • Yan, X., Zhang, F., Gao, D., Zeng, C., Xiang, W., & Zhang, M. (2013b). Accumulations of heavy metals in roadside soils close to zhaling, eling and nam co lakes in the Tibetan plateau. International Journal of Environmental Research and Public Health, 10(6), 2384–2400. doi:10.3390/ijerph10062384.

    Article  CAS  Google Scholar 

  • Zhang, C., Fay, D., McGrath, D., Grennan, E., & Carton, O. T. (2008). Statistical analyses of geochemical variables in soils of Ireland. Geoderma, 146(1–2), 378–390. doi:10.1016/j.geoderma.2008.06.013.

    Article  CAS  Google Scholar 

  • Zhou, P., Zhao, Y., Zhao, Z., & Chai, T. (2015). Source mapping and determining of soil contamination by heavy metals using statistical analysis, artificial neural network, and adaptive genetic algorithm. Journal of Environmental Chemical Engineering, 3(4), 2569–2579. doi:10.1016/j.jece.2015.08.003.

    Article  CAS  Google Scholar 

  • Zimdahl, R. L., & Skogerboe, R. K. (1977). Behavior of lead in soil. Environmental Science & Technology, 11(13), 1202–1207.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Amir Delavar.

Additional information

The original version of this article was revised: The first and fourth authors publication names should have been Arman Naderi and Mohammad Sadegh Askari instead of Arman Nadari and Mohammad Sagdegh Askari.

An erratum to this article is available at http://dx.doi.org/10.1007/s10661-017-5973-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, A., Delavar, M.A., Kaboudin, B. et al. Assessment of spatial distribution of soil heavy metals using ANN-GA, MSLR and satellite imagery. Environ Monit Assess 189, 214 (2017). https://doi.org/10.1007/s10661-017-5821-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5821-x

Keywords

Navigation