Skip to main content

Advertisement

Log in

Responses of soil fungal community to the sandy grassland restoration in Horqin Sandy Land, northern China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Sandy grassland restoration is a vital process including re-structure of soils, restoration of vegetation, and soil functioning in arid and semi-arid regions. Soil fungal community is a complex and critical component of soil functioning and ecological balance due to its roles in organic matter decomposition and nutrient cycling following sandy grassland restoration. In this study, soil fungal community and its relationship with environmental factors were examined along a habitat gradient of sandy grassland restoration: mobile dunes (MD), semi-fixed dunes (SFD), fixed dunes (FD), and grassland (G). It was found that species abundance, richness, and diversity of fungal community increased along with the sandy grassland restoration. The sequences analysis suggested that most of the fungal species (68.4 %) belonged to the phylum of Ascomycota. The three predominant fungal species were Pleospora herbarum, Wickerhamomyces anomalus, and Deconica Montana, accounting for more than one fourth of all the 38 species. Geranomyces variabilis was the subdominant species in MD, Pseudogymnoascus destructans and Mortierella alpine were the subdominant species in SFD, and P. destructans and Fungi incertae sedis were the dominant species in FD and G. The result from redundancy analysis (RDA) and stepwise regression analysis indicated that the vegetation characteristics and soil properties explain a significant proportion of the variation in the fungal community, and aboveground biomass and C:N ratio are the key factors to determine soil fungal community composition during sandy grassland restoration. It was suggested that the restoration of sandy grassland combined with vegetation and soil properties improved the soil fungal diversity. Also, the dominant species was found to be alternative following the restoration of sandy grassland ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Brodie, E., Edwards, S., & Clipson, N. (2003). Soil fungal community structure in a temperate upland grassland soil. FEMS Microbiology Ecology, 45, 105–114.

    Article  CAS  Google Scholar 

  • Cao, C. Y., Jiang, D. M., Teng, X. H., Jiang, Y., Liang, W. J., & Cui, Z. B. (2008). Soil chemical and microbiological properties along a chronosequence of Caragana microphylla Lam. plantations in the Horqin sandy land of Northeast China. Applied Soil Ecology, 40, 78–85.

    Article  Google Scholar 

  • Chapin III, F. S., Matson, P. A. & Vitousek, P. M. (2002). Principles of terrestrial ecosystem ecology. Springer.

  • Fracetto, G. G., Azevedo, L. C., Fracetto, F. J., Andreote, F. D., Lambais, M. R., & Pfenning, L. H. (2013). Impact of Amazon land use on the community of soil fungi. Scientia Agricola, 70, 59–67.

    Article  Google Scholar 

  • Gafan, G. P., Lucas, V. S., Roberts, G. J., Petrie, A., Wilson, M., & Spratt, D. A. (2005). Statistical analyses of complex denaturing gradient gel electrophoresis profiles. Journal of Clinical Microbiology, 43, 3971–3978.

    Article  CAS  Google Scholar 

  • Guo, Y. R., Zhao, H. L., Zuo, X. A., Drake, S., & Zhao, X. Y. (2008). Biological soil crust development and its topsoil properties in the process of dune stabilization, Inner Mongolia, China. Environmental Geology, 54, 653–662.

    Article  CAS  Google Scholar 

  • Harris, J. (2009). Soil microbial communities and restoration ecology: facilitators or followers? Science, 325, 573–574.

    Article  CAS  Google Scholar 

  • Hawksworth, D. L. (1997). The fascination of fungi: exploring fungal diversity. Mycologist, 11, 18–22.

    Article  Google Scholar 

  • Hawksworth, D. L. (2001). The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycological Research, 105, 1422–1432.

    Article  Google Scholar 

  • Hoshino, Y. T. 2012. Molecular analyses of soil fungal community-methods and applications. INTECH Open Access Publisher.

  • Hoshino, Y. T., & Morimoto, S. (2008). Comparison of 18S rDNA primers for estimating fungal diversity in agricultural soils using polymerase chain reaction-denaturing gradient gel electrophoresis. Soil Science & Plant Nutrition, 54, 701–710.

    Article  CAS  Google Scholar 

  • Jiang, D. M., Cao, C. Y., Zhang, Y., Cui, Z. B., & Han, X. S. (2014). Plantations of native shrub species restore soil microbial diversity in the Horqin Sandy Land, northeastern China. Journal of Arid Land, 6, 445–453.

    Article  Google Scholar 

  • Lauber, C. L., Strickland, M. S., Bradford, M. A., & Fierer, N. (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 40, 2407–2415.

    Article  CAS  Google Scholar 

  • Lauber, C. L., Hamady, M., Knight, R., & Fierer, N. (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75, 5111–5120.

    Article  CAS  Google Scholar 

  • Li, Y. L., Johnson, D. A., Su, Y. Z., Cui, J. Y., & Zhang, T. H. (2005). Specific leaf area and leaf dry matter content of plants growing in sand dunes. Botanical Bulletin of Academia Sinica, 46, 127–134.

    Google Scholar 

  • Li, Y. Q., Brandle, J., Awada, T., Chen, Y. P., Han, J. J., Zhang, F. X., & Luo, Y. Q. (2013). Accumulation of carbon and nitrogen in the plant–soil system after afforestation of active sand dunes in China’s Horqin Sandy Land. Agriculture, Ecosystems & Environment, 177, 75–84.

    Article  CAS  Google Scholar 

  • Liu, R. T., Zhao, H. L., Zhao, X. Y., Zuo, X. A., & Drake, S. (2009). Soil macrofaunal response to sand dune conversion from mobile dunes to fixed dunes in Horqin sandy land, northern China. European Journal of Soil Biology, 45, 417–422.

    Article  Google Scholar 

  • Liu, J. J., Sui, Y. Y., Yu, Z. H., Shi, Y., Chu, H. Y., Jin, J., Liu, X. B., & Wang, G. H. (2015a). Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biology and Biochemistry, 83, 29–39.

    Article  CAS  Google Scholar 

  • Liu, R. T., Zhao, H. L., Zhao, X. Y., & Liu, X. M. (2015b). Distribution of soil fauna in Horqin Sandy Land. Beijing: Science Press.

    Google Scholar 

  • May, L. A., Smiley, B., & Schmidt, M. G. (2001). Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Canadian Journal of Microbiology, 47, 829–841.

    Article  CAS  Google Scholar 

  • Mueller, G. M., & Schmit, J. P. (2007). Fungal biodiversity: what do we know? What can we predict? Biodiversity and Conservation, 16, 1–5.

    Article  Google Scholar 

  • Nakatsu, C. (2007). Soil microbial community analysis using denaturing gradient Gel electrophoresis. Soil Science Society of America Journal, 71, 562–571.

    Article  CAS  Google Scholar 

  • Peay, K. G., Baraloto, C., & Fine, P. V. (2013). Strong coupling of plant and fungal community structure across western Amazonian rainforests. The ISME Journal, 7, 1852–1861.

    Article  CAS  Google Scholar 

  • Pellissier, L., Niculita Hirzel, H., Dubuis, A., Pagni, M., Guex, N., Ndiribe, C., Salamin, N., Xenarios, I., Goudet, J., & Sanders, I. R. (2014). Soil fungal communities of grasslands are environmentally structured at a regional scale in the Alps. Molecular Ecology, 23, 4274–4290.

    Article  CAS  Google Scholar 

  • Putten, W. H., Bardgett, R. D., Bever, J. D., Bezemer, T. M., Casper, B. B., Fukami, T., Kardol, P., Klironomos, J. N., Kulmatiski, A., & Schweitzer, J. A. (2013). Plant–soil feedbacks: the past, the present and future challenges. Journal of Ecology, 101, 265–276.

    Article  Google Scholar 

  • Sharma, D., Gosai, K., Dutta, J., Arunachalam, A., & Shukla, A. K. (2015). Fungal diversity of twelve major vegetational zones of Arunachal Himalaya, India. Current Research in Environmental & Applied Mycology, 5, 101–119.

    Google Scholar 

  • Shirato, Y., Zhang, T., Ohkuro, T., Fujiwara, H., & Taniyama, I. (2005). Changes in topographical features and soil properties after exclosure combined with sand-fixing measures in Horqin Sandy Land, Northern China. Soil Science & Plant Nutrition, 51, 61–68.

    Article  Google Scholar 

  • Van Der Heijden, M. G. A., Bardgett, R. D., & Van Straalen, N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296–310.

    Article  Google Scholar 

  • Van Der Wal, A., Geydan, T. D., Kuyper, T. W., & de Boer, W. (2013). A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. Fems Microbiology Reviews, 37, 477–494.

    Article  Google Scholar 

  • Varela, A., Martins, C., Núñez, O., Martins, I., Houbraken, J. A. M. P., Martins, T. M., Leitão, M. C., McLellan, I., Vetter, W., Galceran, M. T., Samson, R. A., Hursthouse, A., & Silva Pereira, C. (2015). Understanding fungal functional biodiversity during the mitigation of environmentally dispersed pentachlorophenol in cork oak forest soils. Environmental Microbiology. doi:10.1111/1462-2920.12837.

    Google Scholar 

  • Wang, T. (2003). Desert and desertification in China. Shijiazhuang: Heibei Science and Technology Publishing House.

    Google Scholar 

  • Wang, G. H., Xu, Y. X., Jin, J., Liu, J. D., Zhang, Q. Y., & Liu, X. B. (2009). Effect of soil type and soybean genotype on fungal community in soybean rhizosphere during reproductive growth stages. Plant and Soil, 317, 135–144.

    Article  CAS  Google Scholar 

  • Wang, S. K., Zhao, X. Y., Qu, H., Zuo, X. A., Lian, J., Tang, X., & Powers, R. (2011). Effects of shrub litter addition on dune soil microbial community in Horqin Sandy Land, Northern China. Arid Land Research and Management, 25, 203–216.

    Article  Google Scholar 

  • Wang, S. K., Zhao, X. Y., Zuo, X. A., Liu, X. P., Qu, H., Mao, W., & Yun, J. Y. (2015). Screening of cellulose decomposing fungi in sandy dune soil of Horqin Sandy Land. Sciences in Cold and Arid Regions, 7, 74–80.

    Google Scholar 

  • Wardle, D. A., & Lindahl, B. D. (2014). Disentangling global soil fungal diversity. Science, 346, 1052–1053.

    Article  CAS  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic. In M. A. Innis, D. H. Gelfand, & J. J. S. J. White (Eds.), PCR protocols—a guide to methods and applications (pp. 315–322). San Diego: Academic.

    Google Scholar 

  • Zhang, J. Y., Zhao, H. L., Zhang, T. H., Zhao, X. Y., & Drake, S. (2005). Community succession along a chronosequence of vegetation restoration on sand dunes in Horqin Sandy Land. Journal of Arid Environments, 62, 555–566.

    Article  Google Scholar 

  • Zhang, Q. M., Zhu, L. S., Wang, J., Xie, H., Wang, J. H., Wang, F. H., & Sun, F. X. (2014). Effects of fomesafen on soil enzyme activity, microbial population, and bacterial community composition. Environmental Monitoring and Assessment, 186, 2801–2812.

    Article  CAS  Google Scholar 

  • Zhao, H. L., Zhao, X. Y., Zhang, T. H., & Wu, W. (2003). Desertification processes and its restoration mechanisms in the Horqin Sand Land. Beijing: Ocean Press.

    Google Scholar 

  • Zhao, X. Y., Wang, S. K., Luo, Y. Y., Huang, W. D., Qu, H., & Lian, J. (2015). Toward sustainable desertification reversion: a case study in Horqin Sandy Land of northern China. Sciences in Cold and Arid Regions, 7, 23–28.

    Google Scholar 

  • Zhou, D. Q. (2002). A tutorial in microbiology. Beijing: Higher Education Press.

    Google Scholar 

  • Zhou, X., Zuo, X. A., Zhao, X. Y., Wang, S. K., Liu, C., Zhang, J., Lv, P., & Zhang, J. P. (2015). Comparison analyses of DCA, CCA, DCCA on relationships between plant community distribution and soil peroperties of Horqin Sandy Land. Chinese Journal of Ecology, 34, 947–954.

    Google Scholar 

  • Zhu, Z. D., & Chen, G. T. (1994). Sandy desertification in China. Beijing: Science Press.

    Google Scholar 

  • Zuo, X. A., Zhao, X. Y., Zhao, H. L., Zhang, T. H., Guo, Y. R., Li, Y. Q., & Huang, Y. X. (2009). Spatial heterogeneity of soil properties and vegetation–soil relationships following vegetation restoration of mobile dunes in Horqin Sandy Land, Northern China. Plant and Soil, 318, 153–167.

    Article  CAS  Google Scholar 

  • Zuo, X. A., Zhao, X. Y., Wang, S. K., Li, Y. Q., Lian, J., & Zhou, X. (2012). Influence of dune stabilization on relationship between plant diversity and productivity in Horqin Sand Land, Northern China. Environmental Earth Sciences, 67, 1547–1556.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Nature Science Foundation of China (41401620 and 41271007), “One Hundred Talent” Program of Chinese Academy of Sciences (Y451H31001), and Major Scientific and Technological Special Project of Inner Mongolia (Y439K71001). We thank all the members of Naiman Desertification Research Station, CAS, for their help in our field and laboratory work. We are also grateful to the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Kun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SK., Zuo, XA., Zhao, XY. et al. Responses of soil fungal community to the sandy grassland restoration in Horqin Sandy Land, northern China. Environ Monit Assess 188, 21 (2016). https://doi.org/10.1007/s10661-015-5031-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-5031-3

Keywords

Navigation