Skip to main content
Log in

Crop evapotranspiration-based irrigation management during the growing season in the arid region of northwestern China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In arid northwestern China, water shortages have triggered recent regulations affecting irrigation water use in desert–oasis agricultural systems. In order to determine the actual water demand of various crops and to develop standards for the rational use of water resources, we analyzed meteorological data from the Fukang desert ecosystem observation and experiment station (FKD), the Cele desert–grassland ecosystem observation and research station (CLD), and the Linze Inland River Basin Comprehensive Research Station (LZD), which all belong to the Chinese Ecosystem Research Network. We researched crop evapotranspiration (E Tc) using the water balance method, the FAO-56 Penman–Monteith method, the Priestley–Taylor method, and the Hargreaves method, during the growing seasons of 2005 through 2009. Results indicate substantial differences in E Tc, depending on the method used. At the CLD, the E Tc from the soil water balance, FAO-56 Penman–Monteith, Priestley–Taylor, and Hargreaves methods were 1150.3 ± 380.8, 783.7 ± 33.6, 1018.3 ± 22.1, and 611.2 ± 23.3 mm, respectively; at the FKD, the corresponding results were 861.0 ± 67.0, 834.2 ± 83.9, 1453.5 ± 47.1, and 1061.0 ± 38.2 mm, respectively; and at the LZD, 823.4 ± 110.4, 726.0 ± 0.4, 722.3 ± 29.4, and 1208.6 ± 79.1 mm, respectively. The FAO-56 Penman–Monteith method provided a fairly good estimation of E Tc compared with the Priestley–Taylor and Hargreaves methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelhadi, A. W., Takeshi, H., Haruya, T., Akio, T., & Tariq, M. A. (2000). Estimation of crop water requirements in arid region using Penman–Monteith equation with derived crop coefficients: a case study on Acala cotton in Sudan Gezira irrigated scheme. Agricultural Water Management, 45, 203–214.

    Article  Google Scholar 

  • Ali, M. H., Shui, L. T., Yan, K. C., Eloubaidy, A. F., & Foong, K. C. (2000). Modeling water balance components and irrigation efficiencies in relation to water requirements for double–cropping systems. Agricultural Water Management, 46, 167–182.

    Article  Google Scholar 

  • Allen, R. G. (2000). Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. Journal of Hydrology, 229(1–2), 27–41.

    Article  Google Scholar 

  • Allen, R. G., Jensen, M. E., Wright, J. L., & Burman, R. D. (1989). Operational estimates of reference evapotranspiration. Agronomy Journal, 81, 650–662.

    Article  Google Scholar 

  • Allen, R. G., Pereira, L. A., Raes, D., & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements. In FAO Irrigation and Drainage Paper 56 (293 p). FAO, Rome: Italy.

  • Amer, K. H., Medan, S. A., & Hatfield, J. L. (2009). Effect of deficit irrigation and fertilization on cucumber. Agronomy Journal, 101(6), 1556–1564.

    Article  CAS  Google Scholar 

  • Araya, A., Stroosnijder, L., Girmay, G., & Keesstra, S. D. (2011). Crop coefficient, yield response to water stress and water productivity of teff (Eragrostis tef (Zucc.). Agricultural Water Management, 98(5), 775–783.

    Article  Google Scholar 

  • Beyazgül, M., Kayam, Y., & Engelsman, F. (2000). Estimation methods for crop water requirements in the Gediz Basin of western Turkey. Journal of Hydrology, 229, 19–26.

    Article  Google Scholar 

  • Bjerkholt, J. T., & Myhr, E. (1996). Potential evapotranspiration from some agriculture crops (pp. 317–322). Texas: Proceedings of ASAE Conf. Nov. 3–6 in San Antonio.

    Google Scholar 

  • Bormann, H., Diekkruger, B., & Renschler, C. (1999). Regionalisation concept for hydrological modelling on different scales using a physically based model: results and evaluation. Physics and Chemistry of the Earth, 24(7), 799–804.

    Article  Google Scholar 

  • Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1989). Estadística para investigadores (pp.675). Barcelona: Reverte.

    Google Scholar 

  • Burman, R., & Pochop, L. O. (1994). Evaporation, evapotranspiration and climatic data (pp.600). Amsterdam: Elsevier Science.

    Google Scholar 

  • Chang, X., Zhao, W., Zhang, Z., & Su, Y. (2006). Sap flow of the Gansu poplar shelter-belt in arid region of Northwest China. Agricultural and Forest Meteorology, 138, 132–141.

    Article  Google Scholar 

  • Cheng, G., Xiao, D., & Wang, G. (1999). On the characteristics and building of landscape ecology in arid area. Advance in Earth Sciences, 14(1), 11–15.

    Google Scholar 

  • Cheng, R., Kang, E., Zhao, W., Zhang, Z., & Song, K. (2004). Estimation of tree transpiration and response of tree conductance to meteorological variables in desert-oasis system of Northwest China. Science in China Ser. D Earth Sciences, 47, 9–20.

    Google Scholar 

  • de Azevedo, P. V., da Silva, B. B., & da Silva, V. P. R. (2003). Water requirements of irrigated mango orchards in northeast Brazil. Agricultural Water Management, 58, 241–254.

    Article  Google Scholar 

  • Descheemaeker, K., Raes, D., Allen, R., Nyssen, J., Poesen, J., Muys, B., Haile, M., & Deckers, J. (2011). Two rapid appraisals of FAO-56 crop coefficients for semiarid natural vegetation of the northern Ethiopian highlands. Journal of Arid Environments, 75(4), 353–359.

    Article  Google Scholar 

  • Dinpashoh, Y. (2006). Study of reference crop evapotranspiration in I.R. of Iran. Agricultural Water Management, 84, 123–129.

    Article  Google Scholar 

  • Domingo, F., Villagarcia, L., Boer, M. M., Alados-Arboledas, L., & Puigdefabregas, J. (2001). Evaluating the long-term water balance of arid zone stream bed vegetation using evapotranspiration modelling and hillslope runoff measurements. Journal of Hydrology, 243(1–2), 17–30.

    Article  Google Scholar 

  • Droogers, P., & Allen, R. G. (2002). Estimating reference evapotranspiration under inaccurate data conditions. Irrigation and Drainage Systems, 16(1), 33–45.

    Article  Google Scholar 

  • Frank, A. B. (2003). Evapotranspiration from northern semiarid grasslands. Agronomy Journal, 95(6), 1504–1509.

    Article  Google Scholar 

  • Fu, B., Li, S., Yu, X., Yang, P., Yu, G., Feng, R., & Zhuang, X. (2010). Chinese ecosystem research network: progress and perspectives. Ecological Complexity, 7, 225–233.

    Article  Google Scholar 

  • Gavilán, P. D., & Berengena, J. (2000). Comportamiento de los métodos de Penman–FAO y Penman–Monteith-FAO en el valle medio del Guadalquivir. In In: Proceedings of the 18th Congreso Nacional de Riegos. Huelva: Spain.

    Google Scholar 

  • Ghamarnia, H., Miri, E., & Ghobadei, M. (2014). Determination of water requirement, single and dual crop coefficients of black cumin (Nigella sativa L.) in a semi-arid climate. Irrigation Science, 32(1), 67–76.

    Article  Google Scholar 

  • Goyal, R. K. (2004). Sensitivity of evapotranspiration to global warming: a case study of arid zone of Rajasthan (India). Agricultural Water Management, 69, 1–11.

    Article  Google Scholar 

  • Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture, 1(2), 96–99.

    Article  Google Scholar 

  • Hunt, J. E., Kelliher, F. M., McSeveny, T. M., & Byers, J. N. (2002). Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought. Agricultural and Forest Meteorology, 111(1), 65–82.

    Article  Google Scholar 

  • Idso, S. B., Jackson, R. D., & Reginato, R. J. (1975). Estimating evaporation—a technique adaptable to remote sensing. Science, 189(4207), 991–992.

    Article  CAS  Google Scholar 

  • Jensen, M. E. (1973). Consumptive use of water and irrigation water requirements, Monograph, no. 71. New York: American Society of Civil Engineers.

    Google Scholar 

  • Jensen, M. E., Burman, R. D., & Allen, R. G. (1990). Evapotranspiration and irrigation water requirements. Manuals and reports on engineering practice no. 70 (pp. 332). New York: American Society of Civil Engineers.

    Google Scholar 

  • Jia, B. (2000). Review and problems of oasis research. Advance in Earth Sciences, 15(4), 381–388.

    Google Scholar 

  • Jia, Z. H., & Luo, W. (2006). Modeling net water requirements for wetlands in semi-arid regions. Agricultural Water Management, 81, 282–294.

    Article  Google Scholar 

  • Jiang, X., Kang, S., Tong, L., Li, F., Li, D., Ding, R., & Qiu, R. (2014). Crop coefficient and evapotranspiration of grain maize modified by planting density in an arid region of northwest China. Agricultural Water Management, 142, 135–143.

    Article  Google Scholar 

  • Kang, S., Cai, H., & Zhang, J. (2000). Estimation of maize evapotranspiration under water deficits in a semiarid region. Agricultural Water Management, 43, 1–14.

    Article  Google Scholar 

  • Kang, S., Gu, B., Du, T., & Zhang, J. (2003). Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region. Agricultural Water Management, 59, 239–254.

    Article  Google Scholar 

  • Karim, S. N. A. A., Ahmed, S. A., Nischitha, V., Bhatt, S., Raj, S. K., & Chandrashekarappa, K. N. (2013). FAO 56 Model and Remote Sensing for the Estimation of Crop-Water Requirement in Main Branch Canal of the Bhadra Command area, Karnataka State. Journal of the Indian Society of Remote Sensing, 41(4), 883–894.

    Article  Google Scholar 

  • Kashyap, P. S., & Panda, R. K. (2001). Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region. Agricultural Water Management, 50, 9–25.

    Article  Google Scholar 

  • Li, Y. L., Cui, J. Y., Zhang, T. H., & Zhao, H. L. (2003). Measurement of evapotranspiration of irrigated spring wheat and maize in a semi-arid region of north China. Agricultural Water Management, 61, 1–12.

    Article  Google Scholar 

  • López-Urrea, R., Olalla, F. M., de, S., Fabeiro, C., & Moratalla, A. (2006). Testing evapotranspiration equations using lysimeter observations in a semiarid climate. Agricultural Water Management, 85, 15–26.

    Article  Google Scholar 

  • Payero, J. O., Tarkalson, D. D., Irmak, S., Davison, D., & Petersen, L. L. (2008). Effect of irrigation amounts applied with subsurface drip irrigation on corn evapotranspiration, yield, water use efficiency, and dry matter production in a semiarid climate. Agricultural Water Management, 88, 895–908.

    Article  Google Scholar 

  • Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux and evaporation using large scale parameters. Monthly Weather Review, 100, 81–92.

    Article  Google Scholar 

  • Rivas, R., & Caselles, V. (2004). A simplified equation to estimate spatial reference evaporation from remote sensing-based surface temperature and local meteorological data. Remote Sensing of Environment, 93, 68–76.

    Article  Google Scholar 

  • Shen, Y., Li, S., Chen, Y., Qi, Y., & Zhang, S. (2013). Estimation of regional irrigation water requirement and water supply risk in the arid region of Northwestern China 1989–2010. Agricultural Water Management, 128, 55–64.

    Article  Google Scholar 

  • Shuttleworth, W. J. (1991). Evaporation models in hydrology. In T. J. Schmugge, & J. C. André (Eds.), Land surface evaporation: measurement and parameterization(pp (pp. 93–120). New York: Springer.

    Chapter  Google Scholar 

  • Sumner, D. M., & Jacobs, J. M. (2005). Utility of Penman–Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration. Journal of Hydrology, 308, 81–104.

    Article  Google Scholar 

  • Tyagi, N. K., Sharma, D. K., & Luthra, S. K. (2000). Determination of evapotranspiration and crop coefficients of rice and sunflower with lysimeter. Agricultural Water Management, 45, 41–54.

    Article  Google Scholar 

  • Vogt, R., & Jaeger, L. (1990). Evaporation from a pine forest-using the aerodynamic method and Bowen ratio method. Agricultural and Forest Meteorology, 50(1–2), 39–54.

    Article  Google Scholar 

  • Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63(11), 1309–1313.

    Article  Google Scholar 

  • Xiong, W., Holman, I., Lin, E., Conway, D., Jiang, J., Xu, Y., & Li, Y. (2010). Climate change, water availability and future cereal production in China. Agriculture, Ecosystems and Environment, 135, 58–69.

    Article  Google Scholar 

  • Zhang, X., Kang, S., Zhang, L., & Liu, J. (2010). Spatial variation of climatology monthly crop reference evapotranspiration and sensitivity coefficients in Shiyang river basin of northwest China. Agricultural Water Management, 97, 1506–1516.

    Article  Google Scholar 

  • Zhao, W., Liu, B., & Zhang, Z. (2010). Water requirements of maize in the middle Heihe River basin, China. Agricultural Water Management, 97, 215–223.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (project 40771079, 91425302, and 4112500). We thank our colleagues at CLD, FKD, and LZD for the support they gave us in our work. We also thank the journal’s anonymous reviewers for their critical reviews and comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuexiang Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, X., Zhao, W. & Zeng, F. Crop evapotranspiration-based irrigation management during the growing season in the arid region of northwestern China. Environ Monit Assess 187, 699 (2015). https://doi.org/10.1007/s10661-015-4920-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4920-9

Keywords

Navigation