Skip to main content

Advertisement

Log in

Using trait-based approaches to study phytoplankton seasonal succession in a subtropical reservoir in arid central western Argentina

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The application of trait-based approaches has become a widely applied tool to analyse community assembly processes and dynamics in phytoplankton communities. Its advantages include summarizing information of many species without losing essentials of the main driving processes. Here, we used trait-based approaches to study phytoplankton temporal succession in a subtropical reservoir. We applied a combined approach including morphological traits (i.e. volume, surface) and functional clustering of species (morphology-based functional groups (MBFG) and Reynolds’ groups) and related the clustering of species with the environment. We found that this reservoir is characterized by a low richness and a bimodal distribution of phytoplankton biomass. Taxonomic and functional classifications were coincident, and the dominant species and groups biomasses were explained by the same group of variables. For instance, group X 2, MBFG V and Carteria sp. biomasses were explained by: pH, Secchi disk depth, N-NH4; while group B, MBFG VI and Cyclotella ocellata biomasses were explained by stability of the water column, incident solar radiation, Secchi disk depth and N-NH4. From our results, we state that functional and taxonomic classifications are complementary rather than opposed approaches, and their specific uses depend exclusively on the aim of the study and the characteristics of the environment under evaluation. Our work is the first description of phytoplankton dynamics in a reservoir in the arid central western Argentina (Cuyo region).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA AWWA WEF (1998). Standard Methods for the Examination of Water and Wastewater. Washington: American Public Health Association, American Water Works Association, Water Environment Federation.

  • Becker, V., Huszar, V. L. M., & Crossetti, L. O. (2009). Responses of phytoplankton functional groups to the mixing regime in a deep subtropical reservoir. Hydrobiologia, 628, 137–151.

    Article  Google Scholar 

  • Becker, V., Caputo, L., Ordóñes, J., Marcé, R., Armengol, J., Crossetti, L. O., & Huszar, V. L. M. (2010). Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Research, 44, 3345–3354.

    Article  CAS  Google Scholar 

  • Borges, P. A. F., Train, S., & Rodrigues, L. C. (2008). Spatial and temporal variation of phytoplankton in two subtropical Brazilian reservoirs. Hydrobiologia, 607, 63–74.

    Article  Google Scholar 

  • Costa, L. S., Huszar, V. L. M., & Ovalle, A. R. (2009). Phytoplankton functional groups in a tropical estuary: hydrological control and nutrient limitation. Estuaries and Coasts, 32, 508–521.

    Article  CAS  Google Scholar 

  • Crossetti, L. O., & Bicudo, C. M. E. (2008). Phytoplankton as a monitoring tool in a tropical urban shallow reservoir (Garças Pond): the assemblage index application. Hydrobiologia, 610, 161–173.

    Article  CAS  Google Scholar 

  • DACC Dirección de Agricultura y Contingencias Climáticas. (2012). Statistic Data. In Spanish. Ministerio de Producción, Tecnología e Innovación. Gobierno de Mendoza. Mendoza; Online data: http://www.contingencias.mendoza.gov.ar.

  • DGI. (2006). Limnological characterization of the reservoirs of Mendoza Province. In: Spanish. Technical report. Final. Iberoamerican States Organization - Irrigation General Department. Mendoza, Argentina.

  • Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M. & Robledo C. W. (2011). InfoStat Group, FCA, Universidad Nacional de Córdoba, Argentina. URL http://www.infostat.com.ar.

  • Follows, M. J., Dutkiewicz, S., Grant, S., & Chisholm, S. W. (2007). Emergent biogeography of microbial communities in a model ocean. Science, 315, 1843–1846.

    Article  CAS  Google Scholar 

  • Fraisse, S., Bormans, M., & Lagadeuc, Y. (2013). Morphofunctional traits reflect differences in phytoplankton community between rivers of contrasting flow regime. Aquatic Ecology, 47, 315–327.

    Article  Google Scholar 

  • Gallego, I., Davidson, T. A., Jeppesen, E., Pérez-Martínez, C., Sánchez-Castillo, P., Juan, M., Fuentes-Rodríguez, F., León, D., Peñalver, P., Toja, J., & Casas, J. J. (2012). Taxonomic or ecological approaches? Searching for phytoplankton surrogates in the determination of richness and assemblage composition in ponds. Ecological Indicators, 18, 575–585.

    Article  Google Scholar 

  • Graham, L. E., & Wilcox, L. W. (2000). Algae. Prentice-Hall, Upper Saddle River.

  • Gurbuz, H., Kivrak, E., Soyupak, S., & Yerli, S. V. (2003). Predicting dominant phytoplankton quantities in a reservoir by using neural networks. Hydrobiologia, 504, 133–141.

    Article  Google Scholar 

  • Hillebrand, H., Dürselen, C., Kirschtel, D., Zohary, T., & Pollingher, U. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35, 403–424.

    Article  Google Scholar 

  • Hu, R., Han, B., & Naselli-Flores, L. (2013). Comparing biological classifications of freshwater phytoplankton: a case study from South China. Hydrobiologia, 701, 219–233.

    Article  Google Scholar 

  • Huisman, J., & Weissing, F. J. (2001). Fundamental unpredictability in multispecies competition. American Naturalist, 157, 488–494. doi:10.1086/319929.

    Article  CAS  Google Scholar 

  • Huszar, V., Kruk, C., & Caraco, N. (2003). Steady-state assemblages of phytoplankton in four temperate lakes (NE U.S.A.). Hydrobiologia, 502, 97–109.

    Article  Google Scholar 

  • Izaguirre, I., Allende, L., Escaray, R., Bustingorry, J., Pérez, G., & Tell, G. (2012). Comparison of morpho-functional phytoplankton classifications in human-impacted shallow lakes with different stable states. Hydrobiologia, 698, 203–216.

    Article  CAS  Google Scholar 

  • Jeppesen, E., Søndergaard, M., Mazzeo, N., Meerhoff, M., Branco, C. C., Huszar, V., & Scasso, F. (2005). Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes. In V. Reddy (Ed.), Tropical eutrophic lakes: their restoration and management (pp. 331–359). Enfield: Science Publishers.

    Google Scholar 

  • Ji, Z. G. (2008). Hydrodynamics and water quality: modeling rivers, lakes, and estuaries. New Jersey: Wiley-Interscience.

    Book  Google Scholar 

  • Kirk, J. T. O. (2011). Light and photosynthesis in aquatic ecosystems. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kruk, C., & Segura, A. (2012). The habitat template of phytoplankton morphology-based functional groups. Hydrobiologia, 698, 191–202.

    Article  CAS  Google Scholar 

  • Kruk, C., Mazzeo, N., Lacerot, G., & Reynolds, C. S. (2002). Classification schemes for phytoplankton: a local validation of a functional approach to the analysis of species temporal replacement. Journal of Plankton Research, 24, 901–912.

  • Kruk, C., Huszar, V. L. M., Peeters, E. T. H. M., Bonilla, S., Costa, L., Lürling, M., Reynolds, C. S., & Scheffer, M. (2010). A morphological classification capturing functional variation in phytoplankton. Freshwater Biology, 55, 614–627.

    Article  Google Scholar 

  • Kruk, C., Peeters, E. T. H. M., Van Nes, E. H., Huszar, V. L. M., Costa, L. S., & Scheffer, M. (2011). Phytoplankton community composition can be predicted best in terms of morphological groups. Limnology and Oceanography, 56, 110–118.

    Article  Google Scholar 

  • Kruk, C., Martínez, A., Nogueira, L., Alonso, C., & Calliari, D. (2015). Morphological traits variability reflects light limitation of phytoplankton production in a highly productive subtropical estuary (Río de la Plata, South America). Marine Biology. doi:10.1007/s00227-014-2568-6.

    Google Scholar 

  • Lavorel, S., McIntyre, S., Landsberg, J., & Forbes, T. D. A. (1997). Plant functional classifications: from general groups to specific groups based on response to disturbance. Trends in Ecology & Evolution, 12, 474–478.

    Article  CAS  Google Scholar 

  • León, J. G. (2013). Nutrient dynamics effects on phytoplankton in El Carrizal Reservoir, Mendoza, Argentina: relationship between water quality and use. In: Spanish. PhD Thesis. Universidad Nacional de Córdoba.

  • León, J. G., & Pedrozo, F. L. (2014). Lithological and hydrological controls on water composition: evaporite dissolution and glacial weathering in the South Central Andes of Argentina (33°–34° S). Hydrological Processes. doi:10.1002/hyp.10226.

    Google Scholar 

  • Machado, K. B., Borges, P. P., Carneiro, F. M., de Santana, J. F., Vieira, L. C. G., de Moraes Huszar, V. L., & Nabout, J. C. (2015). Using lower taxonomic resolution and ecological approaches as a surrogate for plankton species. Hydrobiologia, 743(1), 255–267.

    Article  CAS  Google Scholar 

  • Margalef, R. (1978). Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta, 1, 493–509.

    Google Scholar 

  • McGill, B. J. (2010). Matters of scale. Science, 328, 575–576.

    Article  CAS  Google Scholar 

  • Meerhoff, M., Teixeira-de Mello, F., Kruk, C., Alonso, C., González-Bergonzoni, I., Pacheco, J. P., Lacerot, G., Arim, M., Beklioğlu, M., Brucet, S., Goyenola, G., Iglesias, C., Mazzeo, N., Kosten, S., & Jeppesen, E. (2012). Environmental warming in shallow lakes: a review of potential changes in community structure as evidenced from space-for-time substitution approaches. Advances in Ecological Research, 46, 1–91.

    Google Scholar 

  • Mieleitner, J., Borsuk, M., Bürgi, H. R., & Reichert, P. (2008). Identifying functional groups of phytoplankton using data from three lakes of different trophic state. Aquatic Sciences, 70, 30–46.

    Article  Google Scholar 

  • Naselli-Flores, L. (2000). Phytoplankton assemblage in twenty-one Sicilian reservoirs: relationships between species composition and environmental factors. Hydrobiologia, 424, 1–11.

    Article  CAS  Google Scholar 

  • Naselli-Flores, L., & Barone, R. (2005). Water-level fluctuations in Mediterranean reservoirs: setting a dewatering threshold as a management tool to improve water quality. Hydrobiologia, 548, 85–99.

    Article  Google Scholar 

  • Naselli-Flores, L., Padisák, J., & Albay, M. (2007). Shape and size in phytoplankton ecology: do they matter? Hydrobiologia, 578, 157–161.

    Article  Google Scholar 

  • Pacheco, J. P., Iglesias, C., Meerhoff, M., Fosalba, C., Goyenola, G., Teixeira-de Mello, F., García, S., Gelós, M., & García-Rodríguez, F. (2010). Phytoplankton community structure in five subtropical shallow lakes with different trophic status (Uruguay): a morphology based approach. Hydrobiologia, 646, 187–197.

    Article  CAS  Google Scholar 

  • Padisák, J., Barbosa, F., Koschel, R., & Krienitz, L. (2003). Deep layer cyanoprokaryota maxima are constitutional features of lakes: examples from temperate and tropical regions. Advances in Limnology, 58, 175–199.

    Google Scholar 

  • Padisák, J., Crossetti, L. O., & Naselli-Flores, L. (2009). Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia, 621, 1–19.

    Article  Google Scholar 

  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11, 1633–1644.

    Article  Google Scholar 

  • Peralta, P., & Claps, M. C. (2001). Seasonal variation of the mountain phytoplankton in the arid Mendoza basin, Westcentral Argentina. Journal of Freshwater Ecology, 16, 445–454.

    Article  Google Scholar 

  • Peralta, P., & Claps, M. C. (2002). Plankton of a shallow high mountain lake (Los Horcones, Mendoza, Argentina): an approach. Verhandlungen Internationale Vereinigung Limnologie, 28, 1036–1040.

    Google Scholar 

  • Peralta, P., & Fuentes, V. (2005). Fitobentos, fitoplanctos y zooplancton litoral del Bañado de Carilauquen, Cuenca de Llancanelo, Mendoza, Argentina. Limnetica, 24, 183–198.

    Google Scholar 

  • Peralta, P. I., & León, J. G. (2006). Caracterización Limnológica de los embalses de la provincia de Mendoza, Argentina. Technical Report. Mendoza: General Department of Irrigation.

  • Quirós, R., & Drago, E. (1999). The environmental state of the Argentinean lakes: an overview. Lake and Reservoir Management, 4, 55–64.

    Article  Google Scholar 

  • Reynolds, C. S. (1984). The ecology of freshwater phytoplankton. Cambridge: Cambridge University Press.

    Google Scholar 

  • Reynolds, C. S. (1997). Vegetation processes in the pelagic: a model for ecosystem theory. Oldendorf: Ecology Institute.

    Google Scholar 

  • Reynolds, C. S. (1998). What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia, 369(370), 11–26.

    Article  Google Scholar 

  • Reynolds, C. S. (1999). Metabolic sensitivities of lacustrine ecosystems to anthropogenic forcing. Aquatic Sciences, 61, 183–205.

    Article  CAS  Google Scholar 

  • Reynolds, C. S. (2006). Ecology of phytoplankton. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Reynolds, C. S., & Irish, A. E. (1997). Modelling phytoplankton dynamics in lakes and reservoirs: the problem of in situ growth rates. Hydrobiologia, 349, 5–17.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S. (2002). Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 24, 417–428.

    Article  Google Scholar 

  • Reynolds, C. S., Elliott, J. A., & Frassl, M. A. (2014). Predictive utility of trait-separated phytoplankton groups: a robust approach to modeling population dynamics. Journal of Great Lakes Research, 40, 143–150.

    Article  Google Scholar 

  • Salmaso, N., & Padisák, J. (2007). Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia, 578, 97–112. doi:10.1111/fwb.12520.

    Article  Google Scholar 

  • Salmaso, N., Naselli-Flores, L., & Padisák, J. (2014). Functional classifications and their application in phytoplankton ecology. Freshwater Biology. doi:10.1111/fwb.12520

  • Scheibler, E. E., & Debandi, G. (2008). Spatial and temporal patterns in the aquatic insect community of a high altitude Andean Stream (Mendoza, Argentina). Aquatic Insects, 30, 145–161.

    Article  Google Scholar 

  • Segura, A., Kruk, C., Calliari, D., García-Rodriguez, F., Conde, D., Widdicombe, C. E., & Fort, H. (2013). Use of a morphology-based functional approach to model phytoplankton community succession in a shallow subtropical lake. Freshwater Biology, 58, 504–512.

    Article  Google Scholar 

  • Ter Braak, C. J. F. & Smilauer, P. (2002). CANOCO reference manual and CanoDraw for windows user’s guide: software for canonical community ordination (Version 5). Ithaca: Microcomputer power, (www.canoco.com).

  • Tilman, D., Kilham, S. S., & Kilham, P. (1982). Phytoplankton community ecology: the role of limiting nutrients. Annual Review of Ecology and Systematics, 13, 349–372.

    Article  Google Scholar 

  • Utermöhl, H. (1958). Zur vervollkomrnnung ver quantitativen phytoplankton methodic. Mitteilungen Internationale Vereiningung fuer Theoretische und Angewandte Limnologie, 9, 1–38.

    Google Scholar 

  • Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116, 882–892.

    Article  Google Scholar 

  • Wang, L., Cai, Q., Xu, Y., Kong, L., Tan, L., & Zhang, M. (2011). Weekly dynamics of phytoplankton functional groups under high water level fluctuations in a subtropical reservoir-bay. Aquatic Ecology, 45, 197–212.

    Article  Google Scholar 

  • Weithoff, G. (2003). The concepts of “plant functional types” and “functional diversity” in lake phytoplankton—a new understanding of phytoplankton ecology? Freshwater Biology, 48, 1669–1675.

    Article  Google Scholar 

  • Wetzel, R. G., & Likens, G. E. (1991). Limnological analyses (2nd ed.). New York: Springer Verlag.

    Book  Google Scholar 

  • Wilk-Wožniak, E., & Pociecha, A. (2007). Dynamics of chosen species of phyto- and zooplankton in a deep submontane dam reservoir in light of differing life strategies. Oceanological and Hydrobiological Studies, 36, 35–48.

    Google Scholar 

  • Xiao, L. J., Wang, T., Hu, R., Han, B.-P., Wang, S., Qian, X., & Padisák, J. (2011). Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir. Water Research, 45, 5099–5109.

    Article  CAS  Google Scholar 

  • Xu, Y., Cai, Q., Han, X., Shao, M., & Liu, R. (2010). Factors regulating trophic status in a large subtropical reservoir, China. Environmental Monitoring and Assessment, 169, 2378248.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank G. Baffico and R. Escalante for analysis assistance, P. Bueno for laboratory support and A. Atencio for sampling assistance. This study received financial support from ANPCyT (PICT 2010–0270) and Universidad Nacional del Comahue (Programme 04/B166). We finally acknowledge to the two anonymous reviewers for their constructive advice to improve the manuscript. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Beamud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beamud, S.G., León, J.G., Kruk, C. et al. Using trait-based approaches to study phytoplankton seasonal succession in a subtropical reservoir in arid central western Argentina. Environ Monit Assess 187, 271 (2015). https://doi.org/10.1007/s10661-015-4519-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4519-1

Keywords

Navigation