Skip to main content

Advertisement

Log in

Statistical source identification of major and trace elements in groundwater downward the tailings dam of Miduk Copper Complex, Kerman, Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Identifying the possible sources of potential harmful metals in groundwater systems plays a crucial role in evaluating the potential risks to residents and local plant cover. An attempt was made to define the origin of Al, Cd, Cu, Fe, Mo, Ni, and Pb in groundwater using multivariate statistic approaches [principal component analysis (PCA), hierarchical cluster analysis], and tailings sequential extraction by the method of Tessier et al. The concentrations of studied elements were measured in 42 samples collected from 15 stations surrounding and downward the tailings dam of Miduk Copper Complex, central province of Kerman, Iran. According to the PCA results, confirmed by cluster dendrogram and metal content measurement of tailings sequential extracts, two components accounting for nearly73% of the total variance, controlled the heavy metal variability and classified the possible source of groundwater contamination into two categories: (1) upper seepage which controls the variability of Cd, Cu, Fe, Ni, and Pb and (2) toe seepage of tailings dump affecting on Mo and Al concentration in downstream groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adekola, F. A., Abdus-Salam, N., Bale, R. B., & Oladeji, I. O. (2010). Sequential extraction of trace metals and particle size distribution studies of Kainji Lake sediment, Nigeria. Chemical Speciation and Bioavailability, 22(1), 43–49.

    Article  CAS  Google Scholar 

  • Australian Tailings Consultants (ATC). (2007). Tailings disposal audit, water balance and future planning study. Report No. 106010R513.

  • Blowes, D.W. (1997). The environmental effects of mine wastes. In Proceedings of Exploration 97: Fourth Decennial International Conference on Mineral Exploration, pp. 887–892.

  • Blowes, D. W., & Ptacek, C. J. (1994). Acid-neutralization mechanisms in inactive mine tailings. In Jambor, J.L., & Blowes, D.W. (eds), Environmental geochemistry of sulfide mine-wastes, Mineralogical Association of Canada, Short Course, 22:271–292.

  • Emrich, G. H., & Merritt, G. L. (1969). Effects of mine drainage on ground water. Ground Water, 7, 27–32.

    Article  Google Scholar 

  • Filipek, L.H. (1999). Determination of the source and pathway of cyanide-bearing mine water seepage. In Filipek, L.H., & Plumlee, G.S. (eds), The environmental geochemistry of mineral deposits, part B case studies and research topics, Reviews in Economic Geology, 6B:549–565.

  • Fuge, R., Laidlaw, I. M. S., Perkins, W. T., & Rogers, K. P. (1991). The influence of acidic mine and spoil drainage on water quality in the mid-Wales area. Environmental Geochemistry and Health, 13, 70–75.

    Article  CAS  Google Scholar 

  • Gao, X., Arthur Chen, C.-T., Wang, G., Xue, Q., Chen, T., & Chen, S. (2010). Environmental status of Daya Bay surface sediments inferred from a sequential extraction technique. Estuarine, Coastal and Shelf Science, 89, 369–378.

    Article  Google Scholar 

  • Gould, W. D., Bechard, G., & Lortie, L. (1994). The nature and the role of microorganisnms in the tailings environment. In J. L. Jambor & D. W. Blowes (Eds.), Short course handbook on environmental geochemistry of sulfide mine waste (pp. 185–199). Nepean: Mineralogical Association of Canada.

    Google Scholar 

  • Heikkinen, P.M. (2009). Active sulfide mine tailings impoundments as sources of contaminated drainage: controlling factors, methods of characterization and geochemical constraints for mitigation. Geological Survey of Finland. Academic Dissertation.

  • Heikkinen, P. M., Räisänen, M. L., & Johnson, R. H. (2009). Geochemical characterization of seepage and drainage water quality from two sulfide mine tailings impoundments: acid mine drainage versus neutral mine drainage. Mine Water and Environment, 28, 30–49.

    Article  CAS  Google Scholar 

  • Herbert, R. B., Jr. (1994). Metal transport in ground water contaminated by acid mine drainage. Nordic Hydrology, 25, 193–212.

    CAS  Google Scholar 

  • Jambor, J. L., & Blowes, D. W. (1998). Theory and applications of mineralogy in environmental studies of sulfide-baring mine waste. In L. J. Cabri & D. J. Vaughan (Eds.), Short course handbook on ore and environmental mineralogy (pp. 367–401). Nepean: Mineralogical Association of Canada.

    Google Scholar 

  • Kargar, M. (2010). The effect of the thickened tailings of the concentrator plant of the Miduk copper complex on groundwater pollution. Tehran: University of Tehran. Master thesis in Persian.

    Google Scholar 

  • Kermani, H. (2009). Heavy metal dispersion in Miduk water resources. Kerman: University of Shahid Bahonar. Master thesis in Persian.

    Google Scholar 

  • Kimball, B. A., Callender, E., & Axtmann, E. V. (1995). Effects of colloids on metal transport in a river receiving acid mine drainage, upper Arkansas River, Colorado, USA. Applied Geochemistry, 10, 285–306.

    Article  CAS  Google Scholar 

  • Kirby, C. S., & Cravotta, C. A. (2005). Net alkalinity and net acidity 2: practical considerations. Applied Geochemistry, 20, 1941–1964.

    Article  CAS  Google Scholar 

  • Levinson, A. A. (1980). Introduction to exploration. Geochemistry. Wilmette: Applied Publishing Ltd.

    Google Scholar 

  • Lottermoser, B. G., & Ashley, P. M. (2005). The tailings dam seepage at the rehabilitated Mary Kathleen uranium mine, Australia. Journal of Geochemical Exploration, 85, 119–137.

    Article  CAS  Google Scholar 

  • Makarov, V. N., Vasilyeva, T. N., Makarov, D. V., Alkatseva, A. A., Farvazova, E. R., Nesterov, D. P., et al. (2005). Potential ecological danger of copper and nickel ore concentration tailings dumps withdrawn from operation. Chemistry for Sustainable Development, 13, 85–93.

    CAS  Google Scholar 

  • McGregor, R. G., Blowes, D. W., Jambor, J. L., & Robertson, W. D. (1998). The solid-phase controls on the mobility of heavy metals at the Copper Cliff tailings area, Sudbury, Ontario, Canada. Journal of Contaminant Hydrology, 33, 247–271.

    Article  CAS  Google Scholar 

  • Mirmohammad-Sadeghi, A., & Sharif, H. (1996). Investigation on copper status. Tehran: Emam Hossain University. In Persian.

    Google Scholar 

  • Monterroso, C., & Macías, F. (1998). Drainage waters affected by pyrite oxidation in a coal mine in Galicia (NW Spain): composition and mineral stability. Science of the Total Environment, 216, 121–132.

    Article  CAS  Google Scholar 

  • Morin, K. A., Cherry, J. A., Lim, T. P., & Vivyurka, A. J. (1982). Contaminant transport in a sand aquifer near an inactive uranium tailings impoundment, Elliot Lake, Ontario. Canadian Geotechnical Journal, 19, 49–62.

    Article  CAS  Google Scholar 

  • Patinha, C., da Silva, E. F., & Fonseca, E. C. (2004). Mobilization of arsenic at the Talhadas old mining area-Central Portugal. Journal of Geochemical Exploration, 84, 167–180.

    Article  CAS  Google Scholar 

  • Petruk, W. (2000). Applied mineralogy to tailings and waste rock pile-sulfide oxidation reactions and remediation of acidic water drainage. In Applied mineralogy in the mining industry (pp. 201–225). Amsterdam: Springer.

    Chapter  Google Scholar 

  • Robertson, W.D., Blowes, D.W., & Hanton-Fong, C.J. (1994). Sulfide oxidation related to water table depth at two Sudbury, Ontario tailings impoundments of differing physiography. In Proceedings of the 4th international conference on acid rock drainage (pp. 621–629). Vancouver, BC.

  • Sharmin, S., Zakhir, H. M., & Shikazono, N. (2010). Fractionation profile and mobility pattern of trace metals in sediments of Nomi River, Tokyo, Japan. Journal of Soil Science and Environmental Management, 1(1), 1–14.

    CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844–851.

    Article  CAS  Google Scholar 

  • Tukey, J. W. (1977). Exploratory data analysis. Boston: Addison-Wesley. Reading.

    Google Scholar 

  • Uba, S., Uzairu, A., Harrison, G. F. S., Balarabe, M. L., & Okunola, O. J. (2008). Assessment of heavy metals bioavailability in dumpsites of Zaria Metropolis, Nigeria. African Journal of Biotechnology, 7(2), 122–130.

    CAS  Google Scholar 

  • Vaněk, A., Borůvka, L., Drábekl, O., Mihaljevič, M., & Komárek, M. (2005). Mobility of lead, zinc and cadmium in alluvial soils heavily polluted by smelting industry. Plant, Soil and Environment, 51(7), 316–321.

    Google Scholar 

  • Von der Heyden, C. J., & New, M. G. (2004). Groundwater pollution on the Zambian copperbelt: deciphering the source and the risk. Science of the Total Environment, 327, 17–30.

    Article  Google Scholar 

  • Williams, T. M., & Smiths, B. (2000). Hydrochemical characterization of acute acid mine drainage at Iron Duke mine, Mazowe, Zimbawe. Environmental Geology, 39, 272–278.

    CAS  Google Scholar 

  • Xu, S., Yu, C., & Hiroshiro, Y. (2010). Migration behavior of Fe, Cu, Zn and Mo in alkaline tailings from Lanjiagou porphyry molybdenum deposits, Northeast China. Kyushu University. Memoirs of Faculty of Engineering, 70(2), 19–31.

    CAS  Google Scholar 

  • Yongming, H., Peixuan, D., Junji, C., & Posmentier, E. S. (2006). Multivariate analysis of heavy metals contamination in urban dusts of Xi’an, Central China. Science of the Total Environment, 355, 176–186.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to NICICO (National Iranian Copper Industry Co.) and the Research and Development Center of NICICO for funding this project and Dr. M. Khrorasanipoor and Dr. B. Pirouz for their fruitful collaboration with authors. The authors also wish to thank the respectful reviewers of environmental monitoring and assessment for their comprehensive and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Kargar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kargar, M., Khorasani, N., Karami, M. et al. Statistical source identification of major and trace elements in groundwater downward the tailings dam of Miduk Copper Complex, Kerman, Iran. Environ Monit Assess 184, 6173–6185 (2012). https://doi.org/10.1007/s10661-011-2411-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2411-1

Keywords

Navigation