Skip to main content

Advertisement

Log in

Lichens as a useful mapping tool?—an approach to assess atmospheric N loads in Germany by total N content and stable isotope signature

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To assess whether nitrogen (N) content and δ15N ratios in nitrophytic lichen species (Xanthoria parietina (L.) Th. Fr. (1860) and Physcia spp. (Schreb.) Michaux (1803)) reflect the quantity and quality of atmospheric N loads, 348 lichen samples from 174 sampling grid cells were investigated in the western part of Germany. The analysed lichen N content ranged between 0.98 and 4.28 % and δ15N ratios between −15.2 and −1.3 ‰. Based on the N concentrations and the δ15N ratios of lichens, different landscape categories and coupled N deposition rates could be inferred for different regions of Germany. By analysing environmental variables like altitude, ammonia emission density, livestock unit and different defined deposition types, a direct relationship was found between lichen chemistry and N compounds produced from agricultural activity. The results support the development of a monitoring method which could be used nationally or even internationally to support current N deposition measurements, by providing reliable information on the quantity and quality of N deposition in high N environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asman, W. W. H., Sutton, M. A., & Schjørring, J. K. (1998). Ammonia: emission, atmospheric transport and deposition. New Phytologist, 139, 27–48.

    Article  CAS  Google Scholar 

  • Boltersdorf, S., & Werner, W. (2013). Source attribution of agriculture-related deposition by using total nitrogen and δ15N in epiphytic lichen tissue, bark and deposition water samples in Germany. Isotopes in Environmental and Health Studies, 49, 197–218.

    Article  CAS  Google Scholar 

  • Bruteig, I. E. (1995). The epiphytic lichen Hypogymnia physodes as a biomonitor of atmospheric nitrogen and sulphur deposition in Norway. Environmental Monitoring and Assessment, 26, 27–47.

    Article  Google Scholar 

  • Conti, M. E., & Cecchetti, G. (2001). Biological monitoring: lichens as bioindicators of air pollution assessment—a review. Environmental Pollution, 114, 471–492.

    Article  CAS  Google Scholar 

  • Cressie, N. (2006). Block kriging for lognormal spatial processes. Mathematical Geology, 38(4), 413–443.

    Article  Google Scholar 

  • Dahlman, L., Persson, J., Palmqvist, K., & Näsholm, T. (2004). Organic and inorganic nitrogen uptake in lichens. Planta, 219, 459–467.

    Article  CAS  Google Scholar 

  • Davies, L., Bates, J. W., Bell, J. N. B., James, P. W., & Purvis, O. W. (2007). Diversity and sensitivity of epiphytes to oxides of nitrogen in London. Environmental Pollution, 146, 299–310.

    Article  CAS  Google Scholar 

  • Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., & Tu, K. P. (2002). Stable isotopes in plant ecology. Annual Review of Ecology and Systematics, 33, 507–559.

    Article  Google Scholar 

  • De Schrijver, A., De Frenne, P., Ampoorter, E., Van Nevel, L., Demey, A., Wuyts, K., et al. (2011). Cumulative nitrogen input drives species loss in terrestrial ecosystems. Global Ecology and Biogeography, 20, 803–816.

    Article  Google Scholar 

  • De Vries, W., Leip, A., Reinds, G. J., Kros, J., Lesschen, J. P., & Bouwman, A. F. (2011). Comparison of land budgets for European agriculture by various modeling approaches. Environmental Pollution, 159, 3254–3268.

    Article  Google Scholar 

  • EMEP (2012a). Transboundary air pollution by main pollutants (S, N, O3) and PM in 2010 Germany. EMEP report 1/2012. Oslo: Norwegian Meteorological Institute. http://emep.int/publ/reports/2012/Country_Reports/report_DE.pdf

  • EMEP (2012b). Transboundary acidification, eutrophication and ground level ozone in Europe in 2010, EMEP status report 2012. Oslo: Norwegian Meteorological Institute. http://emep.int/publ/reports/2012/status_report_1_2012.pdf

  • Erisman, J. W., Sutton, M. S., Galloway, J., Klimont, Z., & Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. Nature Geoscience, 1, 636–639.

    Article  CAS  Google Scholar 

  • Estrabou, C., Filippini, E., Soria, J. P., Schelotto, G., & Rodriguez, J. M. (2011). Air quality monitoring system using lichens as bioindicators in Central Argentina. Environmental Monitoring and Assessment, 182, 375–383.

    Article  Google Scholar 

  • Evans, R. D. (2001). Physiological mechanisms influencing plant nitrogen isotope composition. Trends in Plant Science, 6(3), 121–126.

    Article  CAS  Google Scholar 

  • Fogel, M. L., Wooller, M. J., Cheeseman, J., Smallwood, B. J., Roberts, Q., Romero, I., et al. (2008). Unusually negative nitrogen isotopic compositions (δ15N) of mangroves and lichens in an oligotrophic, mircobially-influenced ecosystem. Biogeosciences, 5, 1693–1704.

    Article  CAS  Google Scholar 

  • Fowler, D., & Battarbee, R. (2005). Climate change and pollution in the mountains: the nature of change. In D. E. B. A. Thompson, M. F. Price, & C. A. Galbraith (Eds.), Mountains of northern Europe: conservation management, people and nature (pp. 71–88). Edinburgh: TSO Scotland.

    Google Scholar 

  • Frati, L., & Brunialti, G. (2006). Long-term biomonitoring with lichens: comparing data from different sampling procedures. Environmental Monitoring and Assessment, 119, 391–404.

    Article  CAS  Google Scholar 

  • Frati, L., Santoni, S., Nicolardi, V., Gaggi, C., Brunialti, G., Guttova, A., et al. (2007). Lichen biomonitoring of ammonia emission and nitrogen deposition around a pig stockfarm. Environmental Pollution, 146, 311–316.

    Article  CAS  Google Scholar 

  • Freyer, H. D. (1978). Seasonal trends of NH4 + and NO3 - nitrogen isotope composition in rain collected at Jülich, Germany. Tellus, 30, 83–92.

    Article  CAS  Google Scholar 

  • Gaio-Oliveira, G., Branquinho, B., Máguas, C., & Martins-Loução, M. A. (2001). The concentration of nitrogen in nitrophilous and non-nitrophilous lichen species. Symbiosis, 31, 187–199.

    CAS  Google Scholar 

  • Gaio-Oliveira, G., Dahlman, L., Palmqvist, K., Martins-Loução, M. A., & Máguas, C. (2005). Nitrogen uptake in relation to excess supply and its effects on the lichens Evernia prunastri (L.) Ach and Xanthoria parietina (L.). Th. Fr. Planta, 220, 794–803.

    Article  CAS  Google Scholar 

  • Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., et al. (2003). The nitrogen cascade. BioScience, 53(4), 341–356.

    Article  Google Scholar 

  • Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howart, R. W., Seitzinger, S. P., et al. (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153–226.

    Article  CAS  Google Scholar 

  • Gauger, T., Köble, R., Spranger, T., Bleeker, A., & Draaijers, G. (2001). Deposition loads of sulphur and nitrogen in Germany. Water, Air, & Soil Pollution, 1, 353–373.

    Article  CAS  Google Scholar 

  • Geiser, L. H., Jovan, S. E., Glavich, D. A., & Porter, M. K. (2010). Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington Forests, USA. Environmental Pollution, 158, 2412–2421.

    Article  CAS  Google Scholar 

  • Giordani, P., Brunialti, G., Bacaro, G., & Nascimbene, J. (2012). Functional traits of epiphytic lichens as potential indicators of environmental conditions in forest ecosystems. Ecological Indicators, 18, 413–420.

    Article  Google Scholar 

  • Gombert, S., Asta, J., & Seaward, M. R. D. (2003). Correlation between the nitrogen concentration of two epiphytic lichens and the traffic density in an urban area. Environmental Pollution, 123(2), 281–290.

    Article  CAS  Google Scholar 

  • Gombert, S., Asta, J., & Seaward, M. R. D. (2004). Assessment of lichen diversity by index of atmospheric purity (IAP), index of human impact (IHI) and other environmental factors in an urban area (Grenoble, southeast France). Science of the Total Environment, 324(1–3), 183–199.

    Article  CAS  Google Scholar 

  • Hauck, M. (2010). Ammonium and nitrate tolerance in lichens. Environmental Pollution, 158, 1127–1133.

    Article  CAS  Google Scholar 

  • Heaton, T. H. E., Spiro, B., Madeline, S., & Robertson, C. (1997). Potential canopy influences on the isotopic composition of nitrogen and sulphur in atmospheric deposition. Oecologia, 109, 600–607.

    Article  Google Scholar 

  • Hertel, O., Skjøth, C. A., Løfstrøm, P., Geels, C., Frohm, L. M., Ellermann, T., et al. (2006). Modelling nitrogen deposition on a local scale: a review of the current state of the art. Environmental Chemistry, 3, 317–337.

    Article  CAS  Google Scholar 

  • Hyvärinen, M., & Crittenden, P. D. (1998). Relationships between atmospheric nitrogen inputs and the vertical nitrogen and phosphorus concentration gradients in the lichen Cladonia portentosa. New Phytologist, 140(3), 519–530.

    Article  Google Scholar 

  • Johansson, O., Nordin, A., Olofsson, J., & Palmqvist, K. (2010). Responses of epiphytic lichens to an experimental whole-tree nitrogen-deposition gradient. New Phytologist, 188, 1075–1084.

    Article  CAS  Google Scholar 

  • Johansson, O., Olofsson, J., Giesler, R., & Palmqvist, K. (2011). Lichen responses to nitrogen and phosphorus additions can be explained by the different symbiont responses. New Phytologist, 191, 795–805.

    Article  CAS  Google Scholar 

  • Johansson, O., Palmqvist, K., & Olofsson, J. (2012). Nitrogen deposition drives lichen community changes through differential species responses. Global Change Biology, 18, 2626–2635.

    Article  Google Scholar 

  • Kreins, P. (2013). Notice in writing. Braunschweig: Johann Heinrich von Thünen—Federal Research Institute for Rural Areas, Forestry and Fisheries, Institute Rural Studies.

  • Krupa, S. V. (2003). Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environmental Pollution, 124, 179–221.

    Article  CAS  Google Scholar 

  • Larsen Vilsholm, R., Wolseley, P. A., Søchting, U., & Chimonides, P. J. (2009). Biomonitoring with lichens on twigs. The Lichenologist, 41(2), 189–202.

    Article  Google Scholar 

  • Lee, Y. I., Lim, H. S., & Yoon, H. I. (2009). Carbon and nitrogen isotope composition of vegetation on King George Island, maritime Antarctic. Polar Biology, 32, 1607–1615.

    Article  Google Scholar 

  • Mayer, A. L., Vihermaa, L., Nieminen, N., Luomi, A., & Posch, M. (2009). Epiphytic macrolichen community correlates with modeled air pollutants and forest conditions. Ecological Indicators, 9(5), 992–1000.

    Article  CAS  Google Scholar 

  • Monks, P., Granier, C., Fuzzi, S., Stohl, A., Williams, M. L., Akimoto, H., et al. (2009). Atmospheric composition change—global and regional air quality. Atmospheric Environment, 43(33), 5268–5350.

    Article  CAS  Google Scholar 

  • Ochoa-Hueso, R., & Manrique, E. (2011). Effects of nitrogen deposition and soil fertility on cover and physiology of Cladonia foliacea (Huds.) Willd., a lichen of biological soil crusts from Mediterranean Spain. Environmental Pollution, 159(2), 449–457.

    Article  CAS  Google Scholar 

  • Pesch, R., Schröder, W., Schmidt, G., & Genssler, L. (2008). Monitoring nitrogen accumulation in mosses in central European forests. Environmental Pollution, 155, 528–536.

    Article  CAS  Google Scholar 

  • Pinho, P., Augusto, S., Branquinho, C., Bio, A., Pereira, M. J., Soares, A., et al. (2004). Mapping lichen diversity as a first step for air quality assessment. Journal of Atmospheric Chemistry, 49, 377–389.

    Article  CAS  Google Scholar 

  • Poikolainen, J., Lippo, H., Honigsto, M., Kubin, E., Mikkola, K., & Lindgren, M. (1998). On the abundance of epiphytic green algae in relation to the nitrogen concentrations of biomonitors and nitrogen deposition in Finland. Environmental Pollution, 102, 85–92.

    Article  CAS  Google Scholar 

  • Raymond, B. A., Bassingthwaighte, T., & Shaw, D. P. (2010). Measuring nitrogen and sulphur deposition in the Georgia Basin, British Columbia, using lichens and moss. Journal of Limnology, 69(1), 22–32.

    Google Scholar 

  • Remke, E., Brouwer, E., Kooijman, A., Blindow, I., Esselink, H., & Roelofs, G. M. (2009). Even low to medium nitrogen deposition impacts vegetation of dry, coastal dunes around the Baltic Sea. Environment Pollution, 157(3), 792–800.

    Article  CAS  Google Scholar 

  • Robinson, D. (2001). δ15N as an integrator of the nitrogen cycle. Trends in Ecology & Evolution, 16(3), 153–162.

    Article  Google Scholar 

  • Rösemann, C., Haenel, H. D., Poddey, E., Dämmgen, U., Döhler, H., Eurich-Menden, B., Laubach, P., Dieterle, M., Osterburg, B. (2011). Calculations of gaseous and particulate emissions from German agriculture 1990–2009. Special Issue 342. Braunschweig: Johann Heinrich von Thünen—Federal Research Institute for Rural Areas, Forestry and Fisheries, Institute Agricultural Climate Research.

  • Russow, R., Veste, M., & Littmann, T. (2004). Using natural 15 N abundance to assess the main nitrogen inputs into the sand dune area of the north-western Negev desert (Israel). Isotopes in Environmental and Health Studies, 40(1), 57–67.

    Article  CAS  Google Scholar 

  • Sheppard, L. J., Leith, I. D., Mizunuma, T., Cape, J. N., Crossley, A., Leeson, S., et al. (2011). Dry deposition of ammonia gas drives species change faster than wet deposition of ammonium ions: evidence from a long-term field manipulation. Global Change Biology, 17(12), 3589–3607.

    Article  Google Scholar 

  • Simeonov, V., Kalina, M., & Tsakovski, S. (2003). Multivariate statistical study of simultaneously monitored cloud water, aerosol and rainwater data from different elevation levels in an alpine valley (Achenkirch, Tyrol, Austria). Talanta, 61, 519–528.

    Article  CAS  Google Scholar 

  • Simpson, D. (2011). Atmospheric transport and deposition of reactive nitrogen in Europe. In M. A. Sutton, C. M. Howard, J. W. Erisman, G. Billen, A. Bleeker, P. Grennfelt, H. Van Grinsven, & B. Grizzetti (Eds.), The European nitrogen assessment (pp. 298–316). New York: Oxford University Press.

    Chapter  Google Scholar 

  • Skinner, R. A., Ineson, P., Hicks, W. K., Jones, H. E., Sleep, D., Leith, I. D., et al. (2004). Correlating the spatial distribution of atmospheric ammonia with δ15N values at an ammonia release site. Water, Air, & Soil Pollution, 6, 219–228.

    Article  Google Scholar 

  • Skinner, R. A., Ineson, P., Jones, H., Sleep, D., Leith, I. D., & She, L. J. (2006). Heathland vegetation as a bio-monitor for nitrogen deposition and source attribution using δ15N values. Atmospheric Environment, 40(3), 498–507.

    Article  CAS  Google Scholar 

  • Skjøth, C. A., Geels, C., Berge, H., Gyldenkærne, S., Fagerli, H., Ellermann, T., et al. (2011). Spatial and temporal variations in ammonia emissions—a freely accessible model code for Europe. Atmospheric Chemistry and Physics, 11, 5221–5236.

    Article  Google Scholar 

  • Søchting, U. (1995). Lichens as monitors of nitrogen deposition. Cryptogamic Botany, 5, 264–269.

    Google Scholar 

  • Sparrius, L. B. (2007). Response of epiphytic lichen communities to decreasing ammonia air concentrations in a moderately polluted area of the Netherlands. Environmental Pollution, 146, 375–379.

    Article  CAS  Google Scholar 

  • Sutton, M. A., Milford, C., Dragosits, U., Place, C. J., Singles, R. J., Smith, R. I., et al. (1998). Dispersion, deposition and impacts of atmospheric ammonia: quantifying local budgets and spatial variability. Environmental Pollution, 102, 349–361.

    Article  CAS  Google Scholar 

  • Townsend, A. R., Howarth, R. W., Bazzaz, F. A., Booth, M. S., Cleveland, C. C., Collinge, S. K., et al. (2003). Human health effects of a changing global nitrogen cycle. Frontiers in Ecology and Environment, 1(5), 240–246.

    Article  Google Scholar 

  • Tozer, W. C., Hackell, D., Miers, D. B., & Silvester, W. B. (2005). Extreme isotopic depletion of nitrogen in New Zealand lithophytes and epiphytes; the result of diffusive uptake of atmospheric ammonia? Oecologia, 144, 628–635.

    Article  CAS  Google Scholar 

  • Van Dobben, H., & Ter Braak, C. (1998). Effects of atmospheric NH3 on epiphytic lichens in the Netherlands: the pitfalls of biological monitoring. Atmospheric Environment, 32, 551–557.

    Article  Google Scholar 

  • Van Herk, C. M. (1999). Mapping of ammonia pollution with epiphytic lichens in the Netherlands. The Lichenologist, 31, 9–20.

    Article  Google Scholar 

  • VDI. (2005). VDI guideline 3957/13—biological measurements procedures for determining and evaluating the effects of ambient air pollutants by means of lichens (bioindication)—mapping the diversity of epiphytic lichens as an indicator of air quality. Berlin: The Association of German Engineers.

    Google Scholar 

  • Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists (2nd ed.). West Sussex: Wiley.

    Book  Google Scholar 

  • Wellbrock, N., Riek, W., & Wolff, B. (2005). Characterisation of and changes in the atmospheric deposition situation in German forest ecosystems using multivariate statistics. European Journal of Forest Research, 124, 261–271.

    Article  CAS  Google Scholar 

  • Zechmeister, H. G., Richter, A., Smidt, S., Hohenwallner, D., Roder, I., Maringer, S., et al. (2008). Total nitrogen content and δ15N signatures in moss tissue: indicative value for nitrogen deposition patterns and source allocation on a nationwide scale. Environmental Science & Technology, 42, 8661–8667.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the German Federal Environmental Foundation (DBU). We thank Dorothee Krieger and Bernhard Backes (University of Trier) for excellent technical assistance, Laura M. E. Sutcliffe for improving the language and Sonja Schoeneberg, Markus Bauer and Cornelia Boltersdorf for their energetic support during field work. Monika Harbich and Tobias Wommelsdorf are thanked for their constructive comments during paperwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie H. Boltersdorf.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boltersdorf, S.H., Werner, W. Lichens as a useful mapping tool?—an approach to assess atmospheric N loads in Germany by total N content and stable isotope signature. Environ Monit Assess 186, 4767–4778 (2014). https://doi.org/10.1007/s10661-014-3736-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3736-3

Keywords

Navigation