Skip to main content
Log in

Development of a new risk-based framework to guide investment in water quality monitoring

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

An innovative framework for optimising investments in water quality monitoring has been developed for use by water and environmental agencies. By utilising historical data, investigating the accuracy of monitoring methods and considering the risk tolerance of the management agency, this new methodology calculates optimum water quality monitoring frequencies for individual water bodies. Such information can be applied to water quality constituents of concern in both engineered and natural water bodies and will guide the investment of monitoring resources. Here we present both the development of the framework itself and a proof of concept by applying it to the occurrence of hazardous cyanobacterial blooms in freshwater lakes. This application to existing data demonstrates the robustness of the approach and the capacity of the framework to optimise the allocation of both monitoring and mitigation resources. When applied to cyanobacterial blooms in the Swan Coastal Plain of Western Australia, we determined that optimising the monitoring regime at individual lakes could greatly alter the overall monitoring schedule for the region, rendering it more risk averse without increasing the amount of monitoring resources required. For water resources with high-density temporal data related to constituents of concern, a similar reduction in risk may be observed by applying the framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Babica, P., Blaha, L., & Marsalek, B. (2006). Exploring the natural role of microcystins—a review of effects on photoautotrophic organisms. Journal of Phycology, 42(1), 9–20. doi:10.1111/j.1529-8817.2006.00176.x.

    Article  Google Scholar 

  • Burger, J. (2003). Differing perspectives on the use of scientific evidence and the precautionary principle. Pure and Applied Chemistry, 75(11–12), 2543–2545. doi:10.1351/pac200375112543.

    Article  CAS  Google Scholar 

  • Christoffersen, K. (1996). Ecological implications of cyanobacterial toxins in aquatic food webs. Phycologia, 35(6 Supplement), 42–50. doi:10.2216/i0031-8884-35-6S-42.1.

    Article  Google Scholar 

  • de Figueiredo, D. R., Azeiteiro, U. M., Esteves, S. M., Goncalves, F. J. M., & Pereira, M. J. (2004). Microcystin producing blooms—a serious global public health issue. Ecotoxicology and Environmental Safety, 59(2), 151–163. doi:10.1016/j.ecoenv.2004.04.006.

    Article  Google Scholar 

  • Ghadouani, A., & Coggins, L. X. (2011). Science, technology and policy for water pollution control at the watershed scale: current issues and future challenges. Physics and Chemistry of the Earth, 36(9–11), 335–341. doi:10.1016/j.pce.2011.05.011.

    Article  Google Scholar 

  • Ghadouani, A., Pinel-Alloul, B., & Prepas, E. E. (2003). Effects of experimentally induced cyanobacterial blooms on crustacean zooplankton communities. Freshwater Biology, 48(2), 363–381. doi:10.1046/j.1365-2427.2003.01010.x.

    Article  Google Scholar 

  • Gollier, C., & Treich, N. (2003). Decision-making under scientific uncertainty: the economics of the precautionary principle. Journal of Risk and Uncertainty, 27(1), 77–103. doi:10.1.1.130.431.

    Google Scholar 

  • Gouldson, A., Morton, A., & Pollard, S. J. T. (2009). Better environmental regulation—contributions from risk-based decision-making. Science of the Total Environment, 407(19), 5283–5288. doi:10.1016/j.scitotenv.2009.06.013.

    Article  CAS  Google Scholar 

  • Hrudey, S. E., & Leiss, W. (2003). Risk management and precaution: insights on the cautious use of evidence. Environmental Health Perspectives, 111(13), 1577–1581. doi:10.1289/ehp.6224.

    Article  Google Scholar 

  • Hrudey, S. E., Hrudey, E. J., & Pollard, S. J. T. (2006). Risk management for assuring safe drinking water. Environment International, 32(8), 948–957. doi:10.1016/j.envint.2006.06.004.

    Article  Google Scholar 

  • Hunter, P. D., Hanley, N., Czajkowski, M., Mearns, K., Tyler, A. N., Carvalho, L., et al. (2012). The effect of risk perception on public preferences and willingness to pay for reductions in the health risks posed by toxic cyanobacterial blooms. Science of the Total Environment, 426, 32–44. doi:10.1016/j.scitotenv.2012.02.017.

    Article  CAS  Google Scholar 

  • Jalba, D. I., Rizak, S., & Hrudey, S. (2005). Interpretation of drinking water monitoring data for environmental health professionals. Environmental Health, 5(3), 40–49.

    Google Scholar 

  • Jardine, C. G., Hrudey, S. E., Shortreed, J. H., Craig, L., Krewski, D., Furgal, C., et al. (2003). Risk management frameworks for human health and environmental risks. Journal of Toxicology and Environmental Health-Part B-Critical Reviews, 6(6), 569–641. doi:10.1080/10937400390208608.

    Article  CAS  Google Scholar 

  • MacGillivray, B. H., Hamilton, P. D., Strutt, J. E., & Pollard, S. J. T. (2006). Risk analysis strategies in the water utility sector: an inventory of applications for better and more credible decision making. Critical Reviews in Environmental Science and Technology, 36(2), 85–139. doi:10.1080/1064338050031171.

    Article  Google Scholar 

  • M’Gonigle, R. M., Jamieson, T. L., McAllister, M. K., & Perterman, R. M. (1994). Taking uncertainty seriously: from permissive regulation to preventative design in environmental decision making. Osgoode Hall Law Journal, 32, 99–169.

    Google Scholar 

  • Paerl, H. W., & Paul, V. (2011). Climate change: links to global expansion of harmful cyanobacteria. Water Research, 46(5), 1349–1363. doi:10.1016/j.watres.2011.08.002.

    Article  Google Scholar 

  • Pannell, D. J., Roberts, A. M., Park, G., Alexander, J., Curatolo, A., & Marsh, S. P. (2012). Integrated assessment of public investment in land-use change to protect environmental assets in Australia. Land Use Policy, 29(2), 377–387. doi:10.1016/j.landusepol.2011.08.002.

    Article  Google Scholar 

  • Pollard, S. J., Yearsley, R., Reynard, N., Meadowcroft, I. C., Duarte-Davidson, R., & Duerden, S. L. (2002). Current directions in the practice of environmental risk assessment in the United Kingdom. Environmental Science & Technology, 36(4), 530–538. doi:10.1021/es011050m.

    Article  CAS  Google Scholar 

  • Pollard, S. J. T., Kemp, R. V., Crawford, M., Duarte-Davidson, R., Irwin, J. G., & Yearsley, R. (2004a). Characterizing environmental harm: developments in an approach to strategic risk assessment and risk management. Risk Analysis, 24(6), 1551–1560. doi:10.1111/j.0272-4332.2004.00549.x.

    Article  Google Scholar 

  • Pollard, S. J. T., Strutt, J. E., MacGillivray, B. H., Hamilton, P. D., & Hrudey, S. E. (2004b). Risk analysis and management in the water utility sector—a review of drivers, tools and techniques. Process Safety and Environmental Protection, 82(B6), 453–462. doi:10.1205/psep.82.6.453.53207.

    Article  CAS  Google Scholar 

  • Reichwaldt, E. S., & Ghadouani, A. (2012). Effects of rainfall patterns on toxic cyanobacterial blooms in a changing climate: between simplistic scenarios and complex dynamics. Water Research, 46(5), 1372–1393. doi:10.1016/j.watres.2011.11.052.

    Article  CAS  Google Scholar 

  • Sinang, S. C., Reichwaldt, E. S., & Ghadouani, A. (2013). Spatial and temporal variability in the relationship between cyanobacterial biomass and microcystins. Environmental Monitoring and Assessment, 185(8), 6379–6395. doi:10.1007/s10661-012-3031-0.

    Article  CAS  Google Scholar 

  • Tesfamichael, A. A., & Kaluarachchi, J. J. (2004). Uncertainty analysis of pesticide residues in drinking water risk assessment. Human and Ecological Risk Assessment, 10(6), 1129–1153. doi:10.1080/10807030490887195.

    Article  CAS  Google Scholar 

  • World Health Organization. (2003). Guidelines for Safe Recreational Water Environments: Volume 1: Coastal and Freshwaters. Geneva: World Health Organization.

    Google Scholar 

  • Zhang, M., Duan, H., Shi, X., Yu, Y., & Kong, F. (2012). Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change. Water Research, 46(2), 442–452. doi:10.1016/j.watres.2011.11.013.

    Article  CAS  Google Scholar 

  • Zurawell, R. W., Chen, H. R., Burke, J. M., & Prepas, E. E. (2005). Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 8(1), 1–37. doi:10.1080/10937400590889412.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported under the Australian Research Council’s Linkage Project funding scheme (LP0776571). The authors would like to thank E. S. Reichwaldt, L. X. Coggins, M. J. Francis, D. D. Boland and H. Barrington for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dani J. Barrington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrington, D.J., Ghadouani, A., Sinang, S.C. et al. Development of a new risk-based framework to guide investment in water quality monitoring. Environ Monit Assess 186, 2455–2464 (2014). https://doi.org/10.1007/s10661-013-3552-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3552-1

Keywords

Navigation