Skip to main content

Advertisement

Log in

Groundwater levels time series sensitivity to pluviometry and air temperature: a geostatistical approach to Sfax region, Tunisia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this paper, the pattern of groundwater level fluctuations is investigated by statistical techniques for 24 monitoring wells located in an unconfined coastal aquifer in Sfax (Tunisia) for a time period from 1997 to 2006. Firstly, a geostatistical study is performed to characterize the temporal behaviors of data sets in terms of variograms and to make predictions about the value of the groundwater level at unsampled times. Secondly, multivariate statistical methods, i.e., principal component analysis (PCA) and cluster analysis (CA) of time series of groundwater levels are used to classify groundwater hydrographs regard to identical fluctuation pattern. Three groundwater groups (A, B, and C) were identified. In group “A,” water level decreases continuously throughout the study periods with rapid annual cyclic variation, whereas in group “B,” the water level contains much less high-frequency variation. The wells of group “C” represents a steady and gradual increase of groundwater levels caused by the aquifer artificial recharge. Furthermore, a cross-correlation analysis is used to investigate the aquifer response to local rainfall and temperature records. The result revealed that the temperature is more affecting the variation of the groundwater level of group A wells than the rainfall. However, the second and the third groups are less affected by rainfall or temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aflatooni, M., & Mardaneh, M. (2011). Time series analysis of groundwater table fluctuations due to temperature and rainfall change in Shiraz plain. International Journal of Water Resources and Environmental Engineering, 3(9), 176–188.

    Google Scholar 

  • Ahmadi, S. H., & Sedghamiz, A. (2007). Geostatistical analysis of spatial and temporal variations of groundwater level. Environmental Monitoring and Assessment, 129, 277–294.

    Article  Google Scholar 

  • Alvera-Azcarate, A., Barth, A., Beckers, J. M., & Weisberg, R. H. (2007). Multivariate reconstruction of missing data in sea surface temperature, chlorophyll, and wind satellite fields. Journal of Geophysical Research, 112, C03008. doi:10.1029/2006JC003660.

    Google Scholar 

  • Arslan, H. (2012). Application of multivariate statistical techniques in the assessment of groundwater quality in seawater intrusion area in Bafra Plain, Turkey. Environmental Monitoring and Assessment, 185, 2439–2452.

    Article  Google Scholar 

  • Ataie-Ashtiani, B., Volker, R. E., & Lockington, D. A. (1999). Tidal effects on sea water intrusion in unconfined aquifers. Journal of Hydrology, 216, 17–31.

    Article  Google Scholar 

  • Barabás, N., & Goovaerts, P. (2004). Comparison of geostatistical algorithms for completing groundwater monitoring well times series using data of a nearby river. geoENV IV — Geostatistics for Environmental Applications, 13, 199–210.

    Article  Google Scholar 

  • Ben Marzouk, M. (2005). The 2005 state of the exploitation of unconfined and confined aquifer in the Sfax Basin (in French). Report Commissariat Régional de Développement Agricole Sfax, Sfax, Tunisia, 11 pp.

  • Bennett, R. J., Haining, R. P., & Griffith, D. A. (1984). The problem of missing data on spatial surfaces. Annals of the Association of American Geographers, 74(1), 1984.

    Article  Google Scholar 

  • Ben-Zvi, M., & Keslers, S. (1986). Spatial approach to estimation of missing data. Journal of Hydrology, 88, 69–78.

    Article  Google Scholar 

  • Bouri, S., Abida, H., & Khanfir, H. (2008). Impacts of wastewater irrigation in arid and semi arid regions: case of Sidi Abid region, Tunisia. Environmental Geology, 53, 1421–1432.

    Article  CAS  Google Scholar 

  • Buttafuoco, G., Castrignano, A., Busoni, A. C., & Dimase, E. (2005). Studying the spatial structure evolution of soil water content using multivariate geostatistics. Journal of Hydrology, 311, 202–218.

    Article  Google Scholar 

  • Chen, Z., Grasby, S., & Osadetz, K. G. (2002). Predicting average annual groundwater levels from climatic variables: an empirical model. Journal of Hydrology, 260, 102–117.

    Article  Google Scholar 

  • Chen, Z., Grasby, S., & Osadetz, K. G. (2004). Relation between climate variability and groundwater levels in the upper carbonate aquifer, southern Manitoba, Canada. Journal of Hydrology, 290, 43–62.

    Article  CAS  Google Scholar 

  • Cheng, S. J., Hsieh, H. H., & Wang, Y. M. (2007). Geostatistical interpolation of space–time rainfall on Tamshui River basin, Taiwan. Hydrological Processes, 21, 3136–3145.

    Article  Google Scholar 

  • Chiles, J. P., & Delfiner, P. (1999). Geostatistics: Modeling spatial uncertainty. USA: Wiley.

    Book  Google Scholar 

  • Cornacchiulo, D., & Bagtzoglou, C. (2004). Geostatistical reconstruction of gaps in near-surface electrical resistivity data. Vadose Zone Journal, 3, 1215–1229.

    Google Scholar 

  • Dahech, S., & Beltrando, G. (2012). Observed temperature evolution in the City of Sfax (Middle Eastern Tunisia) for the period 1950–2007. Climatic Change, 114, 689–706.

    Article  Google Scholar 

  • Dowdall, M., Lind, B., Gerland, S., & Rudjord, A. (2003). Geostatistical analysis as applied to two environmental radiometric time series. Environmental Monitoring and Assessment, 83, 1–16.

    Article  Google Scholar 

  • Emery, X. (2002). Géostatistique linéaire. Paris: Ecole des Mines de Paris.

    Google Scholar 

  • Ferguson, G., & St. George, S. (2003). Historical and estimated ground water levels near Winnipeg, Canada, and their sensitivity to climatic variability. Journal of the American Water Resources Association, 39(5), 1249–1259.

    Article  Google Scholar 

  • Gangopadhyay, S., Ashim, D. G., & Nachabe, M. H. (2001). Evaluation of ground water monitoring network by principal component analysis. Groundwater, 39, 181–191.

    Article  CAS  Google Scholar 

  • Geovariance. (2010). Isatis 10.0 meet your energy challenges: improvements and new features. Geovariances, Avon Cedex, France, 14 pp.

  • Hanson, R. T., Newhouse, M. W., & Dettinger, M. D. (2004). A methodology to asess relations between climatic variability and variations in hydrologic time series in the southwestern United States. Journal of Hydrology, 287, 252–269.

    Article  Google Scholar 

  • Holawe, F., & Dutter, R. (1999). Geostatistical study of precipitation series in Austria: time and space. Journal of Hydrology, 219, 70–82.

    Article  Google Scholar 

  • Hwa-Lung, Y., & Hone-Jay, C. (2012). Recharge signal identification based on groundwater level observations. Environmental Monitoring and Assessment, 184, 5971–5982.

    Article  Google Scholar 

  • Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics. London: Oxford University Press (561 pages).

    Google Scholar 

  • Jenkins, G. M., & Watts, D. G. (1968). Spectral analysis and its application. San Francisco: Holden-day.

    Google Scholar 

  • Kaiser, H. F. (1974). Index of factorial simplicity. Psychometrika, 39, 31–36.

    Article  Google Scholar 

  • Kitanidis, P. K. (1996). Introduction to geostatistics: Applications to hydrogeology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kumar, D., & Ahmed, S. (2008). Reconstruction of water level time series in an aquifer using geostatistical technique. In Groundwater dynamics in hard rock aquifers (pp. 191–200). Berlin: Springer.

    Chapter  Google Scholar 

  • Larocque, M., Mangin, A., Razack, M., & Banton, O. (1998). Contribution of correlation and spectral analyses to the regional study of a large karst aquifer (Charente, France). Journal of Hydrology, 205, 217–231.

    Article  Google Scholar 

  • Lee, J. Y., & Lee, K. K. (2000). Use of hydrologic time series data for identification of recharge mechanism in a fractured bedrock aquifer system. Journal of Hydrology, 229, 190–201.

    Article  Google Scholar 

  • Lee, J. Y., Choi, M. J., Kim, Y. Y., & Lee, K. K. (2005). Evaluation of hydrologic data obtained from a local groundwater monitoring network in a metropolitan city, Korea. Hydrological Processes, 19, 2525–2537.

    Article  Google Scholar 

  • Lee, L. J. E., Lawrence, D. S. L., & Price, M. (2006). Analysis of water-level response to rainfall and implications for recharge pathways in the Chalk aquifer, SE England. Journal of Hydrology, 330, 604–620.

    Article  Google Scholar 

  • Lee, J., Kim, J. H., Kim, H. M., & Chang, H. W. (2007). Statistical approach to determine the salinized ground water flow path and hydrogeochemical features around the underground LPG cavern, Korea. Hydrological Processes, 21, 3615–3626.

    Article  CAS  Google Scholar 

  • Lischeid, G., Natkhin, M., Steidl, J., Dietrich, O., Dannowski, R., & Merz, C. (2010). Assessing coupling between lakes and layered aquifers in a complex Pleistocene landscape based on water level dynamics. Advances in Water Resources, 33, 1331–1339.

    Article  Google Scholar 

  • Liu, L., Chen, X., Xu, G., & Shu, L. (2011). Use of hydrologic time-series data for identification of hydrodynamic function and behavior in a karstic water system in China. Hydrogeology Journal, 19, 1577–1585.

    Article  Google Scholar 

  • Longuevergne, L., Florsch, N., & Elsass, P. (2007). Extracting coherent regional information from local measurements with Karhunen–Loeve transform: case study of an alluvial aquifer (Rhine valley, France and Germany). Water Resources Research, 43, W04430. doi:10.1029/2006WR005000.

    Article  Google Scholar 

  • Marche, A., Lastennet, R., Rodiere, B., El Oifi, B., & Ochs, M. (2006). Impact of water table variations on sewer networks. IAEG, 74, 1–9.

    Google Scholar 

  • Maréchal, C., Sarma, M. P., Ahmed, S., & Lachassagne, P. (2002). Establishment of earth tides effect on water level fluctuations in an unconfined hard rock aquifer using spectral analysis. Current Science, 83, 61–64.

    Google Scholar 

  • Mariethoz, G., & Renard, P. (2010). Reconstruction of incomplete data sets or images using direct sampling. Mathematical Geosciences, 42, 245–268.

    Article  Google Scholar 

  • Mohammadi, Z., & Field, M. (2009). On the temporal behavior of karst aquifers, Zagros regions, Iran: a geostatistical approach. Journal of Cave and Karst Studies, 71(3), 210–226.

    Article  Google Scholar 

  • Moon, S. K., Woo, N. C., & Lee, K. S. (2004). Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater recharge. Journal of Hydrology, 292, 198–209.

    Article  Google Scholar 

  • Moustadraf, J., Razack, M., & Sinan, M. (2008). Evaluation of the impacts of climate changes on the coastal Chaouia aquifer, Morocco, using numerical modeling. Hydrogeology Journal, 16, 1411–1426.

    Article  Google Scholar 

  • Nayak, C. P., Satyajirao, Y. R., & Sudheer, K. P. (2006). Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resources Management, 20, 77–90.

    Article  Google Scholar 

  • Padilla, A., & Pulido-Bosch, A. (1995). Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. Journal of Hydrology, 186, 73–89.

    Article  Google Scholar 

  • Perez-Valdivia, C., & Sauchyn, D. (2011). Tree-ring reconstruction of groundwater levels in Alberta, Canada: long term hydroclimatic variability. Dendrochronologia, 29, 41–47.

    Article  Google Scholar 

  • Polemio, M., & Casarano, D. (2008). Climate change, drought and groundwater availability in southern Italy. Geological Society Special Publications, 288, 39–51.

    Article  Google Scholar 

  • Rajmohan, N., Al-Futaisi, A., & Jamrah, A. (2007). Evaluation of long-term groundwater level data in regular monitoring wells, Barka, Sultanate of Oman. Hydrological Processes, 21, 3367–3379.

    Article  Google Scholar 

  • Reghunath, R., Sreedhara Murthy, T. R., & Raghavan, B. R. (2005). Time series analysis to monitor and assess water resources: a moving average approach. Environmental Monitoring and Assessment, 109, 65–72.

    Article  Google Scholar 

  • Rouhani, S., & Myers, D. E. (1990). Problems in space-time kriging of geohydrological data. Mathematical Geology, 22, 611–624.

    Article  Google Scholar 

  • Rouhani, S., & Wackernagel, H. (1990). Multivariate geostatistical approach to space-time data analysis. Water Resources Research, 26, 585–591.

    Article  Google Scholar 

  • Toews, M. W., & Allen, D. M. (2009). Simulated response of groundwater to predicted recharge in a semi-arid region using a scenario of modelled climate change. Environmental Research Letter, 4(3), 035003. doi:10.1088/1748-9326/4/3/035003.

    Article  Google Scholar 

  • Trabelsi, R., Zairi, M., & Ben Dhia, H. (2007). Groundwater salinization of the Sfax superficiel aquifer, Tunisia. Hydrogeology Journal, 15, 1341–1355.

    Article  CAS  Google Scholar 

  • Triki, I., Zairi, M., & Ben Dhia, H. (2012). A geostatistical approach for groundwater head monitoring network optimisation: case of the Sfax superficial aquifer (Tunisia). Water and Environment Journal, 27, 362–372.

    Google Scholar 

  • Venencio, M. D. V., & García, N. O. (2011). Interannual variability and predictability of water table levels at Santa Fe Province (Argentina) within the climatic change context. Journal of Hydrology, 409, 62–70.

    Article  Google Scholar 

  • Winter, T. C., Mallory, S. E., Allen, T. R., & Rosenberry, D. O. (2000). The use of principal component analysis for interpreting ground water hydrographs. Groundwater, 38(2), 234–246.

    Article  CAS  Google Scholar 

  • Wu, M. L., Wang, Y. S., Sun, C. C., Wang, H., Dong, J. D., Yin, J. P., & Han, S. H. (2010). Identification of coastal water quality by statistical analysis methods in Daya Bay, South China Sea. Marine Pollution Bulletin, 60(6), 852–860.

    Article  CAS  Google Scholar 

  • Zhou, F., Liu, Y., & Guo, H. (2007). Application of multivariate statistical methods to water quality assessment of the watercourses in Northwestern New Territories, Hong Kong. Environmental Monitoring and Assessment, 132, 1–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibtissem Triki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Triki, I., Trabelsi, N., Hentati, I. et al. Groundwater levels time series sensitivity to pluviometry and air temperature: a geostatistical approach to Sfax region, Tunisia. Environ Monit Assess 186, 1593–1608 (2014). https://doi.org/10.1007/s10661-013-3477-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3477-8

Keywords

Navigation