Skip to main content
Log in

Artificial neural network modeling of dissolved oxygen in reservoir

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akkoyunlu, A., Altun, H., & Cigizoglu, H. K. (2011). Depth-integrated estimation of dissolved oxygen in a lake. Journal of Environmental Engineering, 137(10), 961–967.

    Article  CAS  Google Scholar 

  • Boano, F., Revelli, R., & Ridolfi, L. (2006). Stochastic modelling of DO and BOD components in a stream with random inputs. Advances in Water Resources, 29(9), 1341–1350.

    Article  Google Scholar 

  • Bonnet, M. P., & Poulin, M. (2004). DyLEM-1D: a 1D physical and biochemical for plankton succession, nutrients and dissolved oxygen cycling application to hyper-eutrophic reservoir. Ecological Modelling, 180(2–3), 317–344.

    Article  CAS  Google Scholar 

  • Chaves, P., & Kojiri, T. (2007). Conceptual fuzzy neural network model for water quality simulation. Hydrological Processes, 21(5), 634–646.

    Article  CAS  Google Scholar 

  • Chen, Y. J., & Wu, S. C. (2006). Behavior of storm-induced suspension interflow in subtropical Feitsui Reservoir, Taiwan. Limnology and Oceanography, 51(2), 1125–1133.

    Article  Google Scholar 

  • Cho, K. H., Park, Y., Kang, J. H., Ki, S. J., Cha, S., Lee, S. W., & Kim, J. H. (2009). Interpretation of seasonal water quality variation in the Yeongsan Reservoir, Korea using multivariate statistical analysis. Water Science and Technology, 59(11), 2219–2226.

    Article  CAS  Google Scholar 

  • Chou, W. S., Lee, T. C., Lin, J. Y., & Yu, S. L. (2007). Phosphorus load reduction goals for Feitsui Reservoir watershed, Taiwan. Environmental Monitoring and Assessment, 131(1–3), 385–408.

    Google Scholar 

  • Curi, W. F., Unny, T. E., & Kay, J. J. (1995). A stochastic physical system approach to modeling river water quality. Stochastic Hydrology and Hydraulics, 9(2), 117–132.

    Article  Google Scholar 

  • Fletcher, R., & Powell, M. J. D. (1963). A rapid convergent descent method for minimization. The Computer Journal, 6(2), 163–168.

    Article  Google Scholar 

  • Gardner, M. W., & Dorling, S. R. (1998). Artificial neural network (the multilayer perceptron)—a review of application in atmospheric sciences. Atmospheric Environment, 32(14–15), 2626–2636.

    Google Scholar 

  • Jang, J. S. R. (1992). Self-learning fuzzy controllers based on temporal back propagation. IEEE Transactions on Neural Networks, 3(5), 714–723.

    Article  CAS  Google Scholar 

  • Jang, J. S. R. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, Cybernetics, 23(3), 665–685.

    Article  Google Scholar 

  • Karakaya, N., Evrendilek, F., & Gungor, K. (2011). Modeling and validating long-term dynamics of diel dissolved oxygen with particular reference to pH in a temperate shallow lake (Turkey). Clean-Soil, Air, Water, 39(11), 966–971.

    Article  CAS  Google Scholar 

  • Keskin, M. E., Taylan, D., & Terzi, O. (2006). Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series. Hydrological Sciences Journal, 51(4), 588–598.

    Article  Google Scholar 

  • Kuo, J. T., Liu, W. C., Lin, R. T., Lung, W. S., Yang, M. D., Yang, C. P., & Chu, S. C. (2003). Water quality modeling for the Feitsui Reservoir in northern Taiwan. Journal of the American Water Resources Association, 39(4), 671–687.

    Article  CAS  Google Scholar 

  • Kuo, J. T., Hsieh, M. H., Lung, W. S., & She, N. (2007). Using artificial network for reservoir eutrophication prediction. Ecological Modelling, 200(1–2), 171–177.

    Article  Google Scholar 

  • Lindim, C., Pinho, J. L., & Vieira, J. M. P. (2011). Analysis of spatial and temporal patterns in a large reservoir using water quality and hydrodynamic modeling. Ecological Modelling, 222(14), 2485–2494.

    Article  CAS  Google Scholar 

  • Liu, W. C., Chen, W. B., & Nobuaki, K. (2009). Impact of phosphorus load reduction on water quality in a stratified reservoir-eutrophication modeling study. Environmental Monitoring and Assessment, 159(1–4), 393–406.

    Article  CAS  Google Scholar 

  • Najah, A., El-Shafie, A., Karim, O. A., Jaafar, O., & El-Shafie, A. H. (2011). An application of different artificial intelligences techniques for water quality prediction. International Journal of Physical Sciences, 6(22), 5298–5308.

    Google Scholar 

  • Najah, A., El-Shafie, A., Karim, O. A., & Jaafar, O. (2012). Water quality prediction model utilizing integrated wavelet-ANFIS model with cross-validation. Neural Computing and Applications, 21(5), 833–841.

    Article  Google Scholar 

  • Nayak, P. C., Sudheer, K. P., Ragan, D. M., & Ramasastri, K. S. (2004). A neuro fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291(1–20), 52–66.

    Article  Google Scholar 

  • Nourani, V., & Komasi, M. (2013). A geomorphology-based ANFIS model for multi-station modeling of rainfall-runoff process. Journal of Hydrology, 490, 41–55.

    Article  Google Scholar 

  • Palani, S., Liong, S. Y., & Tkalich, P. (2008). An ANN application for water quality forecasting. Marine Pollution Bulletin, 56(9), 1586–1597.

    Article  CAS  Google Scholar 

  • Rankovic, V., Radulovic, J., Radojevic, I., Ostojic, A., & Comic, L. (2012). Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system. Journal of Hydroinformatics, 14(1), 167–179.

    Article  CAS  Google Scholar 

  • Rezaeianzadeh, M., Tabari, H., & Yazdi, A. A. (2013). Flood flow forecasting using ANN, ANFIS and regression models. Neural Computing and Applications. doi:10.1007/s00521-013-1443-6.

    Google Scholar 

  • Rucinski, D. K., Beletsky, D., DePinto, J. V., Schwab, D. J., & Scavia, D. (2010). A simple 1-dimensional, climate based dissolved model to central basin of Lake Erie. Journal of Great Lakes Research, 36(3), 465–476.

    Article  CAS  Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536.

    Article  Google Scholar 

  • Sengorur, B., Dogan, E., Koklu, R., & Samamdar, A. (2006). Dissolved oxygen estimation using artificial neural network for water quality control. Fresenius Environmental Bulletin, 15(9), 1064–1067.

    CAS  Google Scholar 

  • Singh, K. P., Basant, A., Malik, A., & Jain, G. (2009). Artificial neural network modeling of the river water quality—a case study. Ecological Modelling, 220(6), 888–895.

    Article  CAS  Google Scholar 

  • Soltani, F., Kerachian, R., & Shirangi, E. (2010). Developing operating rules for reservoirs considering the water quality issues: application of ANFIS-based surrogate models. Expert Systems with Applications, 37(9), 6639–6645.

    Article  Google Scholar 

  • Soyupak, S., Karaer, F., Gurbuz, H., Kivrak, E., Senturk, E., & Yazici, A. (2003). A neural network-based approach for calculating dissolved oxygen profiles in reservoirs. Neural Computing & Applications, 12(3–4), 166–172.

    Article  Google Scholar 

  • Stansbury, J., Kozimor, L., Admiraal, D., & Dove, E. (2008). Water quality modeling of the effects of macrophytes on dissolved oxygen in a shallow tailwater reservoir. Lake and Reservoir Management, 24(4), 339–348.

    Article  Google Scholar 

  • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, Cybernetics, 15(1), 116–132.

    Article  Google Scholar 

  • Talei, A., Chua, L. H. C., & Wong, T. S. W. (2010). Evaluation of rainfall and discharge inputs used by adaptive network-based fuzzy inference system (ANFIS) in rainfall-runoff modeling. Journal of Hydrology, 319(3–4), 248–262.

    Article  Google Scholar 

  • TWMC (Taipei Water Management Committee). (2003). A report of implementation efficiency on protecting water quality/quantity for Taipei Water Source Domain. Taipei: MOEA (in Chinese).

    Google Scholar 

  • Wen, X., Fang, J., Diao, M., & Zhang, C. (2013). Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China. Environmental Monitoring and Assessment, 185(5), 4361–4371.

    Article  CAS  Google Scholar 

  • White, J. D., Prochnow, S. J., Filstrup, C. T., Scott, J. T., Byars, B. W., & Zygo-Flynn, L. (2010). A combined watershed-water quality modeling analysis of the Lake Waco reservoir: I. Calibration and confirmation of predicted water quality. Lake and Reservoir Management, 26(2), 147–158.

    Article  CAS  Google Scholar 

  • Yao, J. Y., Xiao, P., Zhang, Y. H., Zhan, M., & Cheng, J. W. (2011). A mathematical model of algal blooms based on the characteristics of complex networks theory. Ecological Modelling, 222(20–22), 3727–3733.

    Article  Google Scholar 

  • Ying, Z., Jun, N., Fuvi, C., & Liang, G. (2007). Water quality forecast through application of BP neural network at Yuqiao reservoir. Journal Zhejiang University-Science A, 8(9), 1482–1487.

    Article  Google Scholar 

Download references

Acknowledgments

The project under which this study was conducted is supported by the National Science Council, Taiwan, under grant no. NSC 100-2625-M-239-001. The authors would like to express their appreciation to the Feitsui Reservoir Administration Bureau for providing the observational data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Cheng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, WB., Liu, WC. Artificial neural network modeling of dissolved oxygen in reservoir. Environ Monit Assess 186, 1203–1217 (2014). https://doi.org/10.1007/s10661-013-3450-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3450-6

Keywords

Navigation