Skip to main content
Log in

Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Identification and quantification of dissolved oxygen (DO) profiles of river is one of the primary concerns for water resources managers. In this research, an artificial neural network (ANN) was developed to simulate the DO concentrations in the Heihe River, Northwestern China. A three-layer back-propagation ANN was used with the Bayesian regularization training algorithm. The input variables of the neural network were pH, electrical conductivity, chloride (Cl), calcium (Ca2+), total alkalinity, total hardness, nitrate nitrogen (NO3-N), and ammonical nitrogen (NH4-N). The ANN structure with 14 hidden neurons obtained the best selection. By making comparison between the results of the ANN model and the measured data on the basis of correlation coefficient (r) and root mean square error (RMSE), a good model-fitting DO values indicated the effectiveness of neural network model. It is found that the coefficient of correlation (r) values for the training, validation, and test sets were 0.9654, 0.9841, and 0.9680, respectively, and the respective values of RMSE for the training, validation, and test sets were 0.4272, 0.3667, and 0.4570, respectively. Sensitivity analysis was used to determine the influence of input variables on the dependent variable. The most effective inputs were determined as pH, NO3-N, NH4-N, and Ca2+. Cl was found to be least effective variables on the proposed model. The identified ANN model can be used to simulate the water quality parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anctil, F., Perrin, C., & Andreassian, V. (2004). Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models. Environmental Modelling and Software, 19, 357–368.

    Article  Google Scholar 

  • Anctil, F., Filion, M., & Tournebize, J. (2009). A neural network experiment on the simulation of daily nitrate-nitrogen and suspended sediment fluxes from a small agricultural catchment. Ecological Modelling, 220, 879–887.

    Article  CAS  Google Scholar 

  • Ansa-Ansare, O. D., Marr, I. L., & Cresser, M. S. (2000). Evaluation of modelled and measured patterns of dissolved oxygen in a freshwater lake as an indicator of the presence of biodegradable organic pollution. Water Research, 34, 1079–1088.

    Article  Google Scholar 

  • APHA. (1995). Standard methods for the examination of water and wastewater (19th ed.). Washington: American Public Health Association.

    Google Scholar 

  • Banerjee, P., Singh, V. S., Chatttopadhyay, K., Chandra, P. C., & Singh, B. (2011). Artificial neural network model as a potential alternative for groundwater salinity forecasting. Journal of Hydrology, 398, 212–220.

    Article  CAS  Google Scholar 

  • Chang, F. J., Kao, L. S., Kuo, Y. M., & Liu, C. W. (2010). Artificial neural networks for estimating regional arsenic concentrations in a blackfoot disease area in Taiwan. Journal of Hydrology, 388, 65–76.

    Article  CAS  Google Scholar 

  • Cherkassky, V., & Mulier, F. (1998). Learning from data: Concepts, theory, and methods. U.S.A.: Wiley.

    Google Scholar 

  • Coulibaly, P., Anctil, F., Aravena, R., & Bobée, B. (2001). Artificial neural network modeling of water table depth fluctuations. Water Resources Research, 37, 885–896.

    Article  Google Scholar 

  • Coulibaly, P., Bobee, B., & Anctil, F. (2001). Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection. Hydrological Processes, 15, 1533–1536.

    Article  Google Scholar 

  • da Costa, A. O., Silva, P. F., Sabara, M. G., & Da Costa, E. F., Jr. (2009). Use of neural networks for monitoring surface water quality changes in a neotropical urban stream. Environmental Monitoring and Assessment, 155, 527–538.

    Article  Google Scholar 

  • Daliakopoulos, I. N., Coulibaly, P., & Tsanis, I. K. (2005). Groundwater level forecasting using artificial neural networks. Journal of Hydrology, 309, 229–240.

    Article  Google Scholar 

  • Dastorani, M. T., Moghadamnia, A., Piri, J., & Rico-Ramirez, M. (2010). Application of ANN and ANFIS models for reconstructing missing flow data. Environmental Monitoring and Assessment, 166, 421–434.

    Article  Google Scholar 

  • Dixon, B. (2005). Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis. Journal of Hydrology, 309, 17–38.

    Article  Google Scholar 

  • Dogan, E., Sengorur, B., & Koklu, R. (2009). Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. Journal of Environmental Management, 90, 1229–1235.

    Article  CAS  Google Scholar 

  • Elmolla, E. S., Chaudhuri, M., & Eltoukhy, M. M. (2010). The use of artificial neural network (ANN) for modeling of COD removal from antibiotic aqueous solution by the Fenton process. Journal of hazardous materials, 179, 127–34.

    Google Scholar 

  • Fletcher, D., & Goss, E. (1993). Forecasting with neural networks: an application using bankruptcy data. Information Management, 24, 159–167.

    Article  Google Scholar 

  • Freeman, J. A., & Skapura, D. M. (1991). Neural networks: algorithms, applications, and programming techniques. MA: Addison–Wesley, Reading.

    Google Scholar 

  • Gao, Q. (1991). Development and utilization of water resources in the Heihe River catchment (p. 205). Lanzhou: Gansu Science and Technology Press. In Chinese.

    Google Scholar 

  • Garcia, L., & Shigidi, A. (2006). Using neural networks for parameter estimation in ground water. Journal of Hydrology, 318, 215–231.

    Article  Google Scholar 

  • García, A., Revilla, J. A., Medina, R., Alvarez, C., & Juanes, J. A. (2002). A model for predicting the temporal evolution of dissolved oxygen concentration in shallow estuaries. Hydrobiologia, 475/476, 205–211.

    Article  Google Scholar 

  • Garson, G. D. (1998). Neural networks: an introductory guide for social scientists. California: Sage Publications.

    Google Scholar 

  • Ghose, D. K., Panda, S. S., & Swain, P. C. (2010). Prediction of water table depth in western region. Orissa using BPNN and RBFN neural networks. Journal of Hydrology, 394, 296–304.

    Article  Google Scholar 

  • Guo, J., Zhou, J., Qin, H., Zou, Q., & Li, Q. (2011). Monthly streamflow forecasting based on improved support vector machine model. Expert Systems with Applications, 38, 13073–13081.

    Article  Google Scholar 

  • Ha, H., & Stenstrom, M. K. (2003). Identification of land use with water quality data in stormwater using a neural network. Water Research, 37, 4222–4230.

    Article  CAS  Google Scholar 

  • Hagan, M. T., Delmuth, H. B., & Beale, M. (1996). Neural network design. MA: PWS Publishing Company.

    Google Scholar 

  • He, B., Oki, T., Sun, F., Komori, D., Kanae, S., Wang, Y., Kim, H., & Yamazaki, D. (2011). Estimating monthly total nitrogen concentration in streams by using artificial neural network. Journal of Environmental Management, 92, 172–177.

    Article  CAS  Google Scholar 

  • Hinton, G. E. (1992). How neural networks learn from experience. Scientific American, 267, 144–151.

    Article  CAS  Google Scholar 

  • Hull, V., Parrella, L., & Falcucci, M. (2008). Modelling dissolved oxygen dynamics in coastal lagoons. Ecological Modelling, 2, 468–480.

    Article  Google Scholar 

  • Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neuro-fuzzy and soft computing. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Jensen, B. A. (1994). Expert systems—neural networks, Instrument Engineers’ Handbook (3rd ed., pp. 48–54). Radnor: Chilton.

    Google Scholar 

  • Kim, M., & Gilley, J. E. (2008). Artificial neural network estimation of soil erosion and nutrient concentrations in runoff from land application areas. Computers and Electronics in Agriculture, 64(2), 268–275.

    Article  Google Scholar 

  • Kralisch, S., Fink, M., Flügel, W. A., & Beckstein, C. (2003). A neural network approach for the optimisation of watershed management. Environmental Modelling and Software, 18, 815–823.

    Article  Google Scholar 

  • Krishna, B., Satyaji Rao, Y. R., & Vijaya, T. (2008). Modelling groundwater levels in an urban coastal aquifer using artificial neural networks. Hydrological Processes, 22, 1180–1188.

    Article  Google Scholar 

  • Kuo, J. T., Wang, Y. Y., & Lung, W. S. (2006). A hybrid neural–genetic algorithm for reservoir water quality management. Water Research, 40, 1367–1376.

    Article  CAS  Google Scholar 

  • Kuo, J., Hsieh, M., Lung, W., & She, N. (2007). Using artificial neural network for reservoir eutrophication prediction. Ecological Modelling, 200, 171–177.

    Article  Google Scholar 

  • MacKay, D. J. C. (1992). Bayesian interpolation. Neural Computation, 4, 415–447.

    Article  Google Scholar 

  • Maier, H. R., & Dandy, G. C. (1998). The effect of internal parameters and geometry on the performance of back-propagation neural networks: an empirical study. Environmental Modelling and Software, 13, 193–209.

    Article  Google Scholar 

  • Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling and Software, 15, 101–124.

    Article  Google Scholar 

  • Maier, H. R., Jain, A., Dandy, G. C., & Sudheer, K. P. (2010). Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environmental Modelling and Software, 25, 891–909.

    Article  Google Scholar 

  • Najah, A., El-Shafie, A., Karim, O. A., & Jaafar, O. (2011). Integrated versus isolated scenario for prediction dissolved oxygen at progression of water quality monitoring stations. Hydrology and Earth System Sciences, 15, 2693–2708.

    Article  CAS  Google Scholar 

  • Nayak, P., Sudheer, K., Rangan, D., & Ramasastri, K. (2004). A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291, 52–66.

    Article  Google Scholar 

  • Nayak, P. C., Rao, Y. R. S., & Sudheer, K. P. (2006). Groundwater level forecasting in a shallow aquifer using artificial neural network approach. Water Resources Management, 20, 77–90.

    Article  Google Scholar 

  • Ouarda, T. B. M. J., & Shu, C. (2009). Regional low-flow frequency analysis using single and ensemble artificial neural networks. Water Resources Research, 45, w11428.

    Article  Google Scholar 

  • Porter, D. W., Gibbs, P. G., Jones, W. F., Huyakorn, P. S., Hamm, L. L., & Flach, G. P. (2000). Data fusion modeling for groundwater systems. Journal of Contaminant Hydrology, 42, 303–335.

    Article  CAS  Google Scholar 

  • Principe, J. C., Euliano, N. R., & Lefebvre, C. W. (2000). Neural and adaptive systems: fundamentals through simulations. New York: Wiley.

    Google Scholar 

  • Ranković, V., Radulović, J., Radojević, I., Ostojić, A., & Čomić, L. (2010). Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia. Ecological Modelling, 221, 1239–1244.

    Article  Google Scholar 

  • Sahoo, G. B., Ray, C., Wang, J. Z., Hubbs, S. A., Song, R., Jasperse, J., & Seymour, D. (2005). Use of artificial neural networks to evaluate the effectiveness of riverbank filtration. Water Research, 39, 2505–2516.

    Article  CAS  Google Scholar 

  • Senkal, O., Yildiz, B. Y., Sahin, M., & Pestemalci, V. (2012). Precipitable water modelling using artificial neural network in Cukurova region. Environmental Monitoring and Assessment, 184, 141–147.

    Article  Google Scholar 

  • Shu, C., & Ouarda, T. B. M. J. (2007). Flood frequency analysis at ungauged sites using artificial neural networks in canonical correlation analysis physiographic space. Water Resources Research, 43, W07438.

    Article  Google Scholar 

  • Shukla, J. B., Misra, A. K., & Chandra, P. (2008). Mathematical modeling and analysis of the depletion of dissolved oxygen in eutrophied water bodies affected by organic pollutants. Nonlinear Analysis-Real, 9, 1851–1865.

    Article  CAS  Google Scholar 

  • Singh, K. P., Malik, A., Mohan, D., & Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 38, 3980–3992.

    Article  CAS  Google Scholar 

  • Singh, K. P., Basant, A., Malik, A., & Jain, G. (2009). Artificial neural network modeling of the river water quality—a case study. Ecological Modelling, 220, 888–895.

    Article  CAS  Google Scholar 

  • Sreekanth, J., & Datta, B. (2010). Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models. Journal of Hydrology, 393, 245–256.

    Article  Google Scholar 

  • Suen, J. P., Eheart, J. W., & Asce, M. (2003). Evaluation of neural networks for modeling nitrate concentration in rivers. Journal of Water Resources Planning and Management—ASCE, 129, 505–510.

    Article  Google Scholar 

  • Vega, M., Pardo, R., Barrado, E., & Deban, L. (1998). Assessment of seasonal and polluting effects on the quality of River water by exploratory data analysis. Water Research, 32, 3581–3592.

    Article  CAS  Google Scholar 

  • Wang, G., Cheng, G., & Yang, Z. (1999). The utilization of water resources and its influence on eco-environment in the northwest arid area of China. Journal of Natural Resources, 14, 109–116 (In Chinese).

    Google Scholar 

  • Wang, H., Hondzo, M., Xu, C., Poole, V., & Spacie, A. (2003). Dissolved oxygen dynamics of streams draining an urbanized and an agricultural catchment. Ecological Modelling, 160, 145–161.

    Article  CAS  Google Scholar 

  • Wen, X. H., Wu, Y. Q., Lee, L. J. E., Su, J. P. & Wu, J. (2007). Groundwater flow modeling in the Zhangye basin, Northwestern China. Environmental Geology, 53, 77–84.

    Article  Google Scholar 

  • Wu, C. L., & Chau, K. W. (2011). Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis. Journal of Hydrology, 399, 394–409.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the One Hundred Person Project of the Chinese Academy of Sciences (29Y127D01), National Natural Science Foundation of China (41171026, 91025024). The author wishes to thank the anonymous reviewers for their reading of the manuscript, and for their suggestions and critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohu Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, X., Fang, J., Diao, M. et al. Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China. Environ Monit Assess 185, 4361–4371 (2013). https://doi.org/10.1007/s10661-012-2874-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2874-8

Keywords

Navigation