Skip to main content

Advertisement

Log in

Biological endpoints, enzyme activities, and blood cell parameters in two anuran tadpole species in rice agroecosystems of mid-eastern Argentina

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Different biological variables of tadpoles, including survival, development and growth rates, and biomarkers [cholinesterases, glutathione-S-transferases (GST), and blood cell morphology] were evaluated in two anuran species, Scinax squalirostris (Hylidae) and Leptodactylus mystacinus (Leptodactylidae), using in situ experimental chambers in a rice field (RF) sprayed with insecticide Lambda-cyhalothrin (LTC) by aircraft in Santa Fe Province, Argentina. We found a significant decrease in body weight (0.62 ± 0.04 g) of L. mystacinus and an increased development rate of S. squalirostris in individuals from RF (41 ± 1; Gosner) with respect to individuals from the reference site (RS: 0.93 ± 0.04 g and 37 ± 0; respectively). In S. squalirostris, individuals from RF mean values of butyrylcholinesterase activities decreased at 48 (4.09 ± 0.32 nmol min-1 mg-1 of TP) and 96 h (3.74 ± 0.20 nmol min-1 mg-1 of TP), whereas inhibition of acetylcholinesterase was observed at 96 h (47.44 ± 2.78 nmol min-1 mg-1 of TP). In L. mystacinus from RF, an induction of acetylcholinesterase activity was observed at 96 h (36.01 ± 1.09 nmol min-1 mg-1 of TP). Glutathione-S-transferase levels varied between species, being higher in L. mystacinus individuals but lower in S. squalirostris from RF at 48 (272.29 ±11.78 and 71.87 ± 1.70 nmol min-1 mg-1 of TP; respectively) and 96 h (279.25 ± 13.06 and 57.62 ± 4.58 nmol min-1 mg-1 of TP, respectively). Blood cell parameters revealed a lower number of mitotic cells (MC: 0.36 ± 0.31%o for S. squalirostris and 0.08 ± 0.05 %o for L. mystacinus) and higher number of eosinophils (E: 3.45 ± 1.75 %o for S. squalirostris and 7.64 ± 0.98 %o for L. mystacinus) in individuals from the RF than in individuals from the RS (MC: 2.55 ± 0.74 %o for S. squalirostris and 1.87 ± 0.72%o for L. mystacinus; and E: 0.13 ± 0.09 for S. squalirostris and 3.20 ± 0.80 for L. mystacinus). Overall, our results demonstrate the existence of apparent differences in sensitivity between species in a series of sublethal responses to short-term exposure in RF after the application of Lambda-cyhalothrin. We suggest that the integral use of biological endpoints (development and growth) together with biomarkers (cholinesterase, GST, and blood cell parameters) may be a promising integral procedure for investigating pesticide exposure in wild frog populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alvisio, A. (1998). Arroz. Modelos zonales de producción en el movimiento CREA: región litoral Norte. Cuaderno Actual Técnico, 61, 141–145.

    Google Scholar 

  • Andraski, T. W., & Bundy, L. G. (2003). Relationships between phosphorus levels in soil and in runoff from corn production systems. Journal of Environmental Quality, 32, 310–316.

    CAS  Google Scholar 

  • ASIH, HL, & SSAR (2001). Guidelines for use of live amphibians and reptiles in field research. http://www.utexas.edu/depts/asih/herpcoll.htlm. Accessed on 13/06/01.

  • Attademo, A. M., Peltzer, P. M., Lajmanovich, R. C., Cabagna, M., & Fiorenza, G. (2007). Plasma B-esterases and glutathione S-transferase activities in the toad chaunus schneideri (amphibia, anura) inhabiting rice agroecosystems of Argentina. Ecotoxicology, 16, 533–539.

    Article  CAS  Google Scholar 

  • Attademo, A. M., Cabagna-Zenklusen, M., Lajmanovich, R. C., Peltzer, P. M., Junges, C., & Basso, A. (2011). B-esterase activities and blood cell morphology in the frog leptodactylus chaquensis (amphibia: leptodactylidae) on rice agroecosystems from Santa Fe province (Argentina). Ecotoxicology, 20, 274–282.

    Article  CAS  Google Scholar 

  • Ayres, M., Jr., Ayres, D., & Santos, A. (2008). BioEstat Versão5.0. Belém, Pará, Brazil: Sociedade Civil Mamirauá, MCT-CNPq.

    Google Scholar 

  • Bambaradeniya, C. N. B., Edirisinghe, J. P., De Silva, D. N., Gunatilleke, C. V. S., Ranawana, K. B., & Wijekoon, S. (2004). Biodiversity associated with an irrigated rice agroecosystem in Sri Lanka. Biodiversity and Conservation, 13, 1715–1753.

    Article  Google Scholar 

  • Barni, S., Boncompagni, E., Grosso, A., Bertone, V., Freitas, I., Fasola, M., et al. (2007). Evaluation of rana snk esculenta blood cell response to chemical stressors in the environment during the larval and adult phases. Aquatic Toxicology, 81, 45–54.

    Article  CAS  Google Scholar 

  • Bishop, C. A., Mahony, N. A., Struger, J. N. P., & Pettit, K. E. (1999). Anuran development, density and diversity in relation to agricultural activities in the Holland river watershed, Ontario, Canada (1990–1992). Environmental Monitoring and Assessment, 57, 21–43.

    Article  CAS  Google Scholar 

  • Brodeur, J. C., Suarez, R. P., Natale, G. S., Ronco, A. E., & Zaccagnini, M. E. (2011). Reduced body condition and enzymatic alterations in frogs inhabiting intensive crop production areas. Ecotoxicology and Environmental Safety, 74, 1370–1380.

    Article  CAS  Google Scholar 

  • Burkart, R., Barbaro, N. O., Sánchez, R. O., & Gómez, D. A. (1999). Eco-regiones de la Argentina. Buenos Aires, Argentina: PRODIA.

    Google Scholar 

  • Cabagna, M., Lajmanovich, R. C., Stringhini, G., & Peltzer, P. M. (2005). Hematological studies in the common toad (bufo arenarum) in agrosystems of Argentina. Applied Herpetology, 2, 373–380.

    Article  Google Scholar 

  • CASAFE. (2005). Cámara de sanidad agropecuaria y fertilizantes de la república Argentina. Buenos Aires: Guía de Productos Fitosanitarios para la República Argentina.

    Google Scholar 

  • Chernyshova, E. V., & Starostin, V. I. (1994). The peripheral blood of frogs in the genus rana as a test system for assessing environmental pollution. Izvestiya Rossiiskoi Akademii Nauk – Seriya Biologicheskaya, 4, 656–660.

    Google Scholar 

  • Christin, M. S., Menard, L., Gendron, A. D., Ruby, S., Cyr, D., Marcogliese, D. J., et al. (2004). Effects of agricultural pesticides on the immune system of xenopus laevis and rana pipiens. Aquatic Toxicology, 67, 33–43.

    Article  CAS  Google Scholar 

  • Cong, N. V., Phuong, N. T., & Bayley, M. (2008). Brain cholinesterase response in snakehead fish (channa striata) after field exposure to diazinon. Ecotoxicology and Environmental Safety, 71, 314–318.

    Article  CAS  Google Scholar 

  • Czech, H. A., & Parsons, K. C. (2002). Agricultural wetlands and waterbirds: a rewiew. Waterbirds, 25, 56–63.

    Article  Google Scholar 

  • Dacie, J. V., & Lewis, S. M. (1984). Practical hematology. New York: Churchill Livingstone.

    Google Scholar 

  • DeWitt, T. J., & Scheiner, S. M. (2004). Phenotypic plasticity: functional and conceptual approaches. New York: Oxford University Press.

    Google Scholar 

  • Earl, J. E., & Whiteman, H. H. (2010). Evaluation of phosphate toxicity in Cope’s gray treefrog (hyla chrysoscelis) tadpoles. Journal of Herpetology, 44, 201–208.

    Article  Google Scholar 

  • Ellman, G. L., Courtney, K. D., Andreas, V., Jr., & Featherstone, R. M. (1961). A new and rapid calorimetric determination of cholinesterase activity. Biochemical Pharmacology, 7, 88–95.

    Article  CAS  Google Scholar 

  • Elphick, C. S., & Oring, L. W. (2003). Conservation implications of flooding rice fields on winter waterbird communities. Agriculture, Ecosystems and Environmental, 94, 17–29.

    Article  Google Scholar 

  • Farchi, N., Soreq, H., & Hochner, B. (2003). Chronic acetylcholinesterase overexpression induces multilevelled aberrations in mouse neuromuscular physiology. The Journal of Phisiology, 546, 165–173.

    Article  CAS  Google Scholar 

  • Fernando, C. H. (1995). Rice fields are aquatic, semi-aquatic, terrestrial, and agricultural: A complex and questionable limnology. In K. H. Timotius and F. Goltenboth (Eds.), Tropical limnology (vol. 1, pp. 121–148).

  • Fernando, C. H. (1996). Ecology of rice fields and its bearing on fisheries and fish culture. In S. S. de Silva, (Ed.), Perspectives in Asian fisheries (pp. 217–237).

  • Ferrari, A., Lascano, C., Pechen de D’Angelo, A. M., & Venturino, A. (2011). Effects of azinphos methyl and carbaryl on rhinella arenarum larvae esterases and antioxidant enzymes. Comparative Biochemistry and Physiology, 153, 34–39.

    Google Scholar 

  • Fetoui, H., El Mouldi, G., & Zeghal, N. (2009). Lambda-cyhalothrin-induced biochemical and histopathological changes in the liver of rats: ameliorative effect of ascorbic acid. Experimental Toxicology and Pathology, 61, 189–196.

    Article  CAS  Google Scholar 

  • Frasco, M. F., & Guilhermino, L. (2002). Effects of dimethoate and beta-naphthoflavone on selected biomarkers of poecilia reticulata. Fish Physiology and Biochemistry, 26, 149–156.

    Article  CAS  Google Scholar 

  • García-Muñoz, E., Gilbert, J. D., Parra, G., & Guerrero, F. (2010). Wetlands classification for amphibian conservation in Mediterranean landscapes. Biodiversity and Conservation, 19, 901–911.

    Article  Google Scholar 

  • Gibbs, J. P., Whiteleather, K. K., & Schueler, F. W. (2005). Changes in frog and toad populations over 30 years in New York state. Ecology Application, 15, 1148–1157.

    Article  Google Scholar 

  • Gosner, K. L. (1960). A simplified table for staging anuran embryos and larvae with note on identification. Herpetologica, 16, 183–190.

    Google Scholar 

  • Greulich, K., & Pflugmacher, S. (2004). Uptake and effects on detoxication enzymes of cypermethrin in embryos and tadpoles of amphibians. Archives of Environmental Contamination and Toxicology, 47, 489–495.

    Article  CAS  Google Scholar 

  • Guilherme, S., Válega, M., Pereira, M. E., Santos, M. A., & Pacheco, M. (2008). Erythrocytic nuclear abnormalities in wild and caged fish (Liza aurata) along an environmental mercury contamination gradient. Ecotoxicology and Environmental Safety, 70, 411–421.

    Article  CAS  Google Scholar 

  • Habdous, M., Visvikis, S., & Visvikis, S. (2002). Rapid spectrophotometric method for serum glutathione S-transferases activity. Clinical Chemistry Acta, 326, 131–142.

    Article  CAS  Google Scholar 

  • Habig, W. H., Pabst, M. J., & Jakoby, W. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249, 7130–7139.

    CAS  Google Scholar 

  • Hamer, A. J., Makings, J. A., Lane, S. J., & Mahony, M. J. (2004). Amphibian decline and fertilizer used on agricultural land in south-eastern Australia. Agriculture Ecosystems and Environmental, 102, 299–305.

    Article  Google Scholar 

  • Hatch, A. C., & Blaustein, A. R. (2000). Combined effects of UV-B, nitrate, and low pH reduce the survival and activity level of larval cascades frogs (rana cascadae). Archives of Environmental Contamination and Toxicology, 39, 494–499.

    Article  CAS  Google Scholar 

  • Hayes, T. B. (1995). Interdependance of corticosterone-hormones and thyroid-hormones in larval toads (bufo Boreas). I thyroid hormone-dependent and hormone-independent effects of corticosterone on growth and development. Journal of Experimental Zoology, 271(2), 95–102.

    Article  CAS  Google Scholar 

  • He, L. M., Troiano, J. K. S., & Goh, A. (2008). Wang environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin. Review of Environmental Contamination and Toxicology, 195, 71–91.

    CAS  Google Scholar 

  • Hernández-Moreno, D., Soler, F., Míguez, M. P., & Pérez-López, M. (2010). Brain acetylcholinesterase, malondialdehyde and reduced glutathione as biomarkers of continuous exposure of tench, tinca tinca, to carbofuran or deltamethrin. Science of the Total Environmental, 408, 4976–4983.

    Article  Google Scholar 

  • Hill, I. R., Runnalls, J. K., Kennedy, J. H., & Ekoniak, P. (1994). In I. R. Hill, F. Heimbach, P. Leeuwangh, & P. Matthiessen (Eds.), Effects of lambda-cyhalothrin on aquatic organisms in large-scale mesocosms (pp. 345–360). London, UK: Lewis: Freshwater field tests for hazard assessment of chemicals.

    Google Scholar 

  • Hirai, T. (2004). Diet composition of the Indian rice frog, rana limnocharis in the floodplain of the kizu river, Japan. Herpetological Journal, 14, 149–152.

    Google Scholar 

  • Hirai, T., & Matsui, M. (1999). Feeding habits of the pond frog, rana nigromaculata, inhabiting rice fields in Kyoto, Japan. Copeia, 1999, 940–947.

    Article  Google Scholar 

  • Hogan, N. S., Duarte, P., Wade, M. G., Lean, D. R. S., & Trudeau, V. L. (2008). Estrogenic exposure affects metamorphosis and alters sex ratios in the northern leopard frog (rana pipiens): identifying critically vulnerable periods of development. General and Comparative Endocrinology, 156, 515–523.

    Article  CAS  Google Scholar 

  • Hurlbert, S. H. (1984). Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 53, 187–211.

    Article  Google Scholar 

  • Ilizaliturri-Hernández, C. A., González-Mille, D. J., Mejía-Saavedra, J., Espinosa-Reyes, G., Torres-Dosal, A., & Pérez-Maldonado, I. (2013). Blood lead levels, δ-ALAD inhibition, and hemoglobin content in blood of giant toad (rhinella marina) to asses lead exposure in three areas surrounding an industrial complex in Coatzacoalcos, Veracruz, Mexico. Environmental Monitoring and Assessment, 185, 1685–1698.

    Article  Google Scholar 

  • Jofre, M. B., & Karasov, W. H. (1999). The direct effect of ammonia on three species of north American anuran amphibians. Environmental Toxicology and Chemistry, 18, 1806–1812.

    Article  CAS  Google Scholar 

  • Jones, D. K., Hammond, J. I., & Relyea, R. A. (2009). Very highly toxic effects of endosulfan across nine species of tadpoles: Lag effects and family-level sensitivity. Environmental Toxicology and Chemistry, 28, 1939–1945.

    Article  CAS  Google Scholar 

  • Juliano, B. O. (1993). Rice in human nutrition. Manila, Philippines: Food and Agriculture Organization (FAO) and International Rice Research Institute (IRRI).

    Google Scholar 

  • Khan, M. Z., Tabassum, R., Naqvi, S. N. H., Shah, E. Z., Tabassum, F., Ahmad, I., et al. (2003). Effect of cypermethrin and permethrin on cholinesterase activity and protein contents in rana tigrina (amphibia). Turkish Journal of Zoology, 27, 243–246.

    CAS  Google Scholar 

  • Kiesecker, J. M. (2002). Synergism between trematode infection and pesticide exposure: a link to amphibian limb deformities in nature? Proceedings of the National Academic of Sciences of the United States of America, 99, 9900–9904.

    Article  CAS  Google Scholar 

  • Kingbley, G. R. (1942). The direct biuret method for the determination of serum proteins as applied to photoelectric and visual calorimetry. Journal of Laboratory and Clinical Medicine, 27, 840–845.

    Google Scholar 

  • Lajmanovich, R. C., Attademo, A. M., Peltzer, P. M., & Junges, C. M. (2009). Inhibition and recovery of brain and tail cholinesterases of odontophrynus americanus tadpoles (amphibia: cycloramphidae) exposed to fenitrothion. Journal of Environmental Biology, 30, 923–992.

    CAS  Google Scholar 

  • Lajmanovich, R. C., Peltzer, P. M., Junges, C. M., Attademo, A. M., Sanchez, L. C., & Basso, A. (2010). Activity levels of B-esterases in the tadpoles of 11 species of frogs in the middle Paraná river floodplain: implication for ecological risk assessment of soybean crops. Ecotoxicology and Environmental Safety, 73, 1517–1524.

    Article  CAS  Google Scholar 

  • Lajmanovich, R. C., Attademo, A. M., Peltzer, P. M., Junges, C. M., & Cabagna, M. C. (2011). Toxicity of four glyphosate formulations on rhinella arenarum (anura: bufonidae) tadpoles: B-esterases and glutathione S-transferase inhibitions. Archives of Environmental Contamination and Toxicology, 60, 681–689.

    Article  CAS  Google Scholar 

  • Machado, I. F., & Maltchik, L. (2010). Can management practices in rice fields contribute to amphibian conservation in southern Brazilian wetlands? Aquatic Conservation: Marine and Freshwater Ecosystems, 20, 39–46.

    Google Scholar 

  • Mann, R. M., Hyne, R. V., Choung, C. B., & Wilson, S. P. (2009). Amphibians and agricultural chemicals: review of the risks in a complex environment. Environmental Pollution, 157, 2903–2927.

    Article  CAS  Google Scholar 

  • Marco, A., & Blaustein, A. R. (1999). The effects of nitrite on behavior and metamorphosis in cascades frogs (rana cascadae). Environmental and Toxicology Chemistry, 18, 949–949.

    Google Scholar 

  • Margolin, B. H., Collings, B. J., & Mason, J. M. (1983). Statistical analysis and sample size determinations for Mutagenicity experiments with binomial responses. Environmental Mutagenesis, 5, 705–716.

    Article  CAS  Google Scholar 

  • Martínez-Alvarez, R. M., Morales, A. E., & Sanz, A. (2005). Antioxidant defenses in fish: biotic and abiotic factors. Review in Fish Biology and Fisheries, 15, 75–88.

    Article  Google Scholar 

  • McCarthy, J., & Shugart, L. (1990). In J. McCarthyand & L. Shugart (Eds.), Biological markers of environmental contamination (pp. 3–14). Boca Raton, FL: Lewis: Biomarkers of environmental contamination.

    Google Scholar 

  • Meister, R. T. (1992). Farm chemicals handbook 92. Willough-by, OH: Meister Publishing.

  • Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: wetlands and water. Washington, DC: World Resources Institute.

    Google Scholar 

  • Navas, C. A., & Otani, L. (2007). Physiology, environmental change, and anuran conservation. Phyllomedusa, 6, 83–102.

    Article  Google Scholar 

  • Nebeker, A. V., & Schuytema, G. S. (2000). Effects of ammonium sulfate on growth of larval northwestern salamanders, red-legged and pacific treefrog tadpoles and juvenile fathead minnows. Bulletin of Environmental Contamination and Toxicology, 64, 271–278.

    Article  CAS  Google Scholar 

  • Ognjanovic’, B. I., et al. (2003). Protective influence of vitamin E on antioxidant defense system in the blood of rats treated with cadmium. Physiology Research, 52, 563–570.

    Google Scholar 

  • Orton, F., & Routledge, E. (2011). Agricultural intensity in ovo affects growth, metamorphic development and sexual differentiation in the common toad (bufo bufo). Ecotoxicology, 20, 901–911.

    Article  CAS  Google Scholar 

  • Parichy, D. M., & Kaplan, R. H. (1992). Maternal effects on offspring growth and development depend on environmental quality in the frog bombina orientalis. Oecologia, 91, 579–586.

    Article  Google Scholar 

  • Peltzer, P. M., & Lajmanovich, R. C. (2007). Amphibians. In M. H. Iriondo, J. C. Paggi, & M. J. Parma (Eds.), The middle Parana river: limnology of a subtropical wetland (pp. 327–340). Heidelberg: Springer Berlin.

    Chapter  Google Scholar 

  • Peltzer, P. M., Lajmanovich, R. C., Attademo, A. M., & Beltzer, A. H. (2006). Anuran diversity across agricultural pond in Argentina. Biodiversity and Conservation, 15, 3499–3513.

    Article  Google Scholar 

  • Peltzer, P. M., Lajmanovich, R. C., Sánchez- Hernández, J. C., Cabagna, M. C., Attademo, A. M., & Bassó, A. (2008). Assessment of agricultural pond eutrophication on survival and health status of the scinax nasicus tadpoles. Environmental and Ecotoxicology Safety, 70, 185–197.

    Article  CAS  Google Scholar 

  • Relyea, R. A. (2009). A cocktail of contaminants: How pesticide mixtures at low concentrations affect aquatic communities. Oecologia, 159, 363–376.

    Article  Google Scholar 

  • Relyea, R. A., & Jones, D. K. (2009). The toxicity of roundup original MAX® to 13 species of larval amphibians. Environmental Toxicology and Chemistry, 28, 2004–2008.

    Article  CAS  Google Scholar 

  • Romanova, E. B., & Egorikhina, M. N. (2006). Changes in haematological parameters of rana frogs in a transformed urban environment. Russian Journal of Ecology, 37, 208–213.

    Article  Google Scholar 

  • Rousse, J. D., Bishop, C. A., & Struger, J. (1999). Nitrogen pollution: an assessment of its threat to amphibian survival. Environmental Health Perspectectives, 107, 799–803.

    Article  Google Scholar 

  • Rowe, C. L., Kinney, O. M., Nagle, R. D., & Congdon, J. C. (1998). Elevated maintenance costs in an anura exposed to a mixture of trace elements during the embryonic and early larval periods. Physiology Zoology, 71, 27–35.

    Article  CAS  Google Scholar 

  • Sánchez-Hernández, J. C. (2007). Ecotoxicological perspectives of B-esterases in the assessment of pesticide contamination. In R. H. Plattenberg (Ed.), Environmental pollution: New research (pp. 1–45). New York: Nova Science Publishers.

    Google Scholar 

  • Semlitsch, R. D., Bridges, C. M., & Welch, A. M. (2000). Genetic variation and a fitness trade off in the tolerance of gray treefrog (hyla versicolor) tadpoles to the insecticide carbaryl. Oecologica, 125, 179–185.

    Article  Google Scholar 

  • Sparling, D. W., & Fellers, G. M. (2007). Comparative toxicity of chlorpyrifos, diazinon, to larval rana boylii. Environmetal Pollution, 147, 535–539.

    Article  CAS  Google Scholar 

  • Stansley, W., & Roscoe, D. E. (1996). The uptake and effects of lead in small mammals and frogs at a trap and skeet range. Archives of Environmental Contamination and Toxicology, 30, 220–226.

    Article  CAS  Google Scholar 

  • Sullivan, K. B., & Spence, K. M. (2003). Effects of sublethal concentrations of atrazine and nitrate on metamorphosis of the African clawed frog. Environmental Toxicology and Chemistry, 33, 627–635.

    Article  Google Scholar 

  • Teplitsky, C., Plénet, S., & Joly, P. (2003). Tadpoles responses to risk of fish introduction. Oecologia, 134, 270–277.

    CAS  Google Scholar 

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671–677.

    Article  CAS  Google Scholar 

  • Walker, C. H. (1998). The use of biomarkers to measure the interactive effects of chemicals. Ecotoxicology and Environmental Safety, 40, 65–70.

    Article  CAS  Google Scholar 

  • Zaya, R. M., Amini, Z., Whitaker, A. S., Kohler, S. L., & Ide, C. F. (2011). Atrazine exposure affects growth, body condition and liver health in xenopus laevis tadpoles. Aquatic Toxicology, 104, 243–253.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the owner of the field for allowing us to conduct the study. We thank the members of the Department of Mathematics, Faculty of Biochemistry and Biological Sciences, UNL for their statistical suggestions. This study was supported in part by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Agencia Nacional de Promoción Científica y Tecnológica (ANCyT) and Curso de Acción para la Investigación y Desarrollo (CAI + D-UNL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Maximiliano Attademo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Attademo, A.M., Peltzer, P.M., Lajmanovich, R.C. et al. Biological endpoints, enzyme activities, and blood cell parameters in two anuran tadpole species in rice agroecosystems of mid-eastern Argentina. Environ Monit Assess 186, 635–649 (2014). https://doi.org/10.1007/s10661-013-3404-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3404-z

Keywords

Navigation