Skip to main content

Advertisement

Log in

Probabilistic risk assessment of insecticide concentrations in agricultural surface waters: a critical appraisal

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Due to the specific modes of action and application patterns of agricultural insecticides, the insecticide exposure of agricultural surface waters is characterized by infrequent and short-term insecticide concentration peaks of high ecotoxicological relevance with implications for both monitoring and risk assessment. Here, we apply several fixed-interval strategies and an event-based sampling strategy to two generalized and two realistic insecticide exposure patterns for typical agricultural streams derived from FOCUS exposure modeling using Monte Carlo simulations. Sampling based on regular intervals was found to be inadequate for the detection of transient insecticide concentrations, whereas event-triggered sampling successfully detected all exposure incidences at substantially lower analytical costs. Our study proves that probabilistic risk assessment (PRA) concepts in their present forms are not appropriate for a thorough evaluation of insecticide exposure. Despite claims that the PRA approach uses all available data to assess exposure and enhances risk assessment realism, we demonstrate that this concept is severely biased by the amount of insecticide concentrations below detection limits and therefore by the sampling designs. Moreover, actual insecticide exposure is of almost no relevance for PRA threshold level exceedance frequencies and consequential risk assessment outcomes. Therefore, we propose a concept that features a field-relevant ecological risk analysis of agricultural insecticide surface water exposure. Our study quantifies for the first time the environmental and economic consequences of inappropriate monitoring and risk assessment concepts used for the evaluation of short-term peak surface water pollutants such as insecticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguilar, C., Ferrer, I., Borrull, F., Marce, R. M., & Barcelo, D. (1999). Monitoring of pesticides in river water based on samples previously stored in polymeric cartridges followed by on-line solid-phase extraction liquid chromatography diode array detection and confirmation by atmospheric pressure chemical ionization mass spectrometry. Analytica Chimica Acta, 386, 237–248.

    Article  CAS  Google Scholar 

  • Allan, J. D., & Castillo, M. M. (2007). Stream ecology—structure and functioning of running waters (2nd ed.). Dordrecht: Springer.

    Google Scholar 

  • Ashauer, R., Boxall, A., & Brown, C. (2006). Predicting effects on aquatic organisms from fluctuating or pulsed exposure to pesticides. Environmental Toxicology and Chemistry, 25, 1899–1912.

    Article  CAS  Google Scholar 

  • Ashauer, R., & Brown, C. D. (2007). Comparison between FOCUS output for pesticide concentrations over time and field observations. University of York report for Defra project PS2231.

  • Barra, R., Vighi, M., & Di Guardo, A. (1995). Prediction of surface water input of chloridazon and chlorpyrifos from an agricultural watershed in Chile. Chemosphere, 30, 485–500.

    Article  CAS  Google Scholar 

  • Baughman, D. S., Moore, D. W., & Scott, G. I. (1989). A comparison and evaluation of field and laboratory toxicity tests with fenvalerate on an estuarine crustacean. Environmental Toxicology and Chemistry, 8, 417–429.

    Article  CAS  Google Scholar 

  • Boardman, J., Evans, R., Favis-Mortlock, D. T., & Harris, T. M. (1990). Climate change and soil erosion on agricultural land in England and Wales. Land Degradation & Rehabilitation, 2, 95–106.

    Article  Google Scholar 

  • Bocheva, L., Marinova, T., Simeonov, P., & Gospodinov, I. (2009). Variability and trends of extreme precipitation events over Bulgaria (1961–2005). Atmospheric Research, 93, 490–497.

    Article  Google Scholar 

  • Brock, T., Alix, A., Brown, C., Capri, E., Gottestbüren, B., Heimbach, F., et al. (2008). ELINK—linking aquatic exposure and effects in the registration procedure of plant protection products. Boca Raton: CRC.

    Google Scholar 

  • Brock, T. C. M., Arts, G. H. P., Maltby, L., & Van den Brink, P. J. (2006). Aquatic risk of pesticides, ecological protection goals, and common aims in European Union Legislation. Integrated Environmental Assessment and Management, 2, e20–e46.

    Article  Google Scholar 

  • California Environmental Protection Agency (EPA). (2006). Amendments to the water quality control plan for the Sacramento River and San Joaquin River basins for the control of diazinon and chlorpyrifos runoff into the Sacramento–San Joaquin Delta. Appendix D—Cost calculations. Final Staff Report.

  • Carter, A., & Capri, E. (2004). Exposure and effects of chlorpyrifos following use under southern European conditions, Catania (Italy), 9–10 April 2003. Outlooks on Pest Management, 15, 24–28.

    Article  Google Scholar 

  • Crawford, C. G. (2004). Sampling strategies for estimating acute and chronic exposures of pesticides in streams. Journal of the American Water Resources Association, 40, 485–502.

    Article  CAS  Google Scholar 

  • Crossland, N. O., Shires, S. W., & Benett, D. (1982). Aquatic toxicology of cypermethrin. III. Fate and biological effects of spray drift deposits in fresh water adjacent to agricultural land. Aquatic Toxicology, 2, 253–270.

    Article  CAS  Google Scholar 

  • Dabrowski, J. M., Bennett, E. R., Bollen, A., & Schulz, R. (2006). Mitigation of azinphos-methyl in a vegetated stream: comparison of runoff- and spray-drift. Chemosphere, 62, 204–212.

    Article  CAS  Google Scholar 

  • DG SANCO. (2002). Guidance document on aquatic ecotoxicology—in the context of the Directive 91/414/EEC. Sanco/3268/2001 rev.4 (final), Working Document. European Commission Health & Consumer Protection Directorate-General.

  • DG SANCO. (2008). EU pesticide database. http://ec.europa.eu/sanco_pesticides/public/index.cfm2011. Accessed 27 May 2011.

  • Commission, E. (2000). Plant protection in the EU—consumption of plant protection products in the European Union (Data 1992–1996). Luxembourg: Office for Official Publications of the European Communities.

    Google Scholar 

  • European Environment Agency. (2007). Briefing small water bodies. Report prepared by European Topic Centre on water. (EEA/ADS/06/001—Water).

  • Eurostat. (2007). The use of plant protection products in the European Union—data 1992–2003. Luxembourg: Office for Official Publications of the European Commission.

    Google Scholar 

  • Ewald, J. A., & Aebischer, N. J. (2000). Trends in pesticide use and efficacy during 26 years of changing agriculture in southern England. Environmental Monitoring and Assessment, 64, 493–529.

    Article  CAS  Google Scholar 

  • Finley, D. B., Scott, G. I., Daugomah, J. W., Layman, S. L., Reed, L., Sanders, M., et al. (1999). Case study: ecotoxicological assessment of urban and agricultural nonpoint source runoff effects on the Grass Shrimp, Palaemonetes pugio. In M. A. Lewis, F. L. Mayer, R. L. Powell, M. K. Nelson, S. I. Klaine, & M. G. Henry (Eds.), Ecotoxicology and risk assessment for wetlands (pp. 243–273). Pensacola: Society of Environmental Toxicology and Chemistry (SETAC).

    Google Scholar 

  • FOCUS (2001). FOCUS surface water scenarios in the EU evaluation process under 91/414/EEC. Report of the FOCUS Working Group on Surface Water Scenarios. EC Document Reference SANCO/4802/2001-rev.2.

  • Gianessi, L., & Reigner, N. (2006). Pesticide use in U.S. crop production: 2002—insecticides & other pesticides. Washington: CropLife Foundation.

    Google Scholar 

  • Giddings, J. M., Hall, L. W., Jr., & Solomon, K. R. (2000). Ecological risks of diazinon from agricultural use in the Sacramento–San Joaquin River basins, California. Risk Analysis, 20, 545–572.

    Article  CAS  Google Scholar 

  • Gilliom, R. J., Barbash, J. E., Crawford, C. G., Hamilton, P. A., Martin, J. D., Nakagaki, N., et al. (2006). The quality of our nation’s waters—pesticides in the nation’s streams and ground water, 1992–2001. U.S. Geological Survey Circular 1291. Reston: U.S. Geological Survey.

    Google Scholar 

  • Götz, C. W., Stamm, C., Fenner, K., Singer, H., Scharer, M., & Hollender, J. (2010). Targeting aquatic microcontaminants for monitoring: exposure categorization and application to the Swiss situation. Environmental Science and Pollution Research International, 17, 341–354.

    Article  Google Scholar 

  • Gregoire, C., Payraudeau, S., & Domange, N. (2010). Use and fate of 17 pesticides applied on a vineyard catchment. International Journal of Environmental Analytical Chemistry, 90, 406–420.

    Article  CAS  Google Scholar 

  • Hall, L. W. (2003). Analysis of diazinon monitoring data from the Sacramento and Feather River watersheds: 1991–2001. Environmental Monitoring and Assessment, 86, 233–253.

    Article  CAS  Google Scholar 

  • Harmel, R. D., King, K. W., & Slade, R. M. (2003). Automated storm water sampling on small watersheds. Applied Engineering in Agriculture, 19, 667–674.

    Google Scholar 

  • Hart, A. (2001). Probabilistic risk assessment for pesticides in Europe: implementation & research needs. Sand Hutton: Central Science Laboratory.

    Google Scholar 

  • Holvoet, K., Seuntjens, P., Mannaerts, R., De Schepper, V., & Vanrolleghem, P. A. (2007). The dynamic water–sediment system: results from an intensive pesticide monitoring campaign. Water Science and Technology, 55, 177–182.

    Article  CAS  Google Scholar 

  • House, W. A. (1994). Sampling techniques for organic substances in surface waters. International Journal of Environmental Analytical Chemistry, 57, 207–214.

    Article  CAS  Google Scholar 

  • Iwafune, T., Yokoyama, A., Nagai, T., & Horio, T. (2011). Evaluation of the risk of mixtures of paddy insecticides and their transformation products to aquatic organisms in the Sakura River, Japan. Environmental Toxicology and Chemistry, 30, 1834–1842.

    Article  CAS  Google Scholar 

  • Jergentz, S., Mugni, H., Bonetto, C., & Schulz, R. (2005). Assessment of insecticide contamination in runoff and stream water of small agricultural streams in the main soybean area of Argentina. Chemosphere, 61, 817–826.

    Article  CAS  Google Scholar 

  • Karaouzas, I., Lambropoulou, D. A., Skoulikidis, N. T., & Albanis, T. A. (2011). Levels, sources and spatiotemporal variation of nutrients and micropollutants in small streams of a Mediterranean River basin. Journal of Environmental Monitoring, 13, 3064–3074.

    Article  CAS  Google Scholar 

  • Kollat, J. B., & Reed, P. M. (2006). Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design. Advances in Water Resources, 29, 792–807.

    Article  Google Scholar 

  • Kreuger, J. (1995). Monitoring of pesticides in subsurface and surface water within an agricultural catchment in southern Sweden. British Crop Protection Council Monograph No. 62, Pesticide Movement to Water, 81–86.

  • Kreuger, J. K., & Brink, N. (1988). Losses of pesticides from agriculture. In IEAE (Ed.), Pesticides: food and environmental implications (pp. 101–112). Vienna: International Atomic Energy Agency.

    Google Scholar 

  • Lepom, P., Brown, B., Hanke, G., Loos, R., Quevauviller, P., & Wollgast, J. (2009). Needs for reliable analytical methods for monitoring chemical pollutants in surface water under the European Water Framework Directive. Journal of Chromatography. A, 1216, 302–315.

    Article  CAS  Google Scholar 

  • Liess, M., & Schulz, R. (2000). Sampling methods in surface waters. In L. M. L. Nollet (Ed.), Handbook of water analysis (pp. 1–24). New York: Marcel Dekker.

    Google Scholar 

  • Liess, M., Schulz, R., Liess, M. H.-D., Rother, B., & Kreuzig, R. (1999). Determination of insecticide contamination in agricultural headwater streams. Water Research, 33, 239–247.

    Article  CAS  Google Scholar 

  • Marshall, E. (2008). Breakdown of the year—financial meltdown. Science, 322, 1772.

    Article  CAS  Google Scholar 

  • Moore, M. T., Schulz, R., Cooper, C. M., Smith, S., Jr., & Rodgers, J. H., Jr. (2002). Mitigation of chlorpyrifos runoff using constructed wetlands. Chemosphere, 46, 827–835.

    Article  CAS  Google Scholar 

  • Pedersen, J. A., Yeager, M. A., & Suffet, J. H. M. (2006). Organophosphorus insecticides in agricultural and residential runoff: field observations and implications for total maximum daily load development. Environmental Science and Technology, 40, 2120–2127.

    Article  CAS  Google Scholar 

  • Pichon, V., Charpak, M., & Hennion, M. C. (1998). Multiresidue analysis of pesticides using new laminar extraction disks and liquid chromatography and application to the French priority list. Journal of Chromatography. A, 795, 83–92.

    Article  CAS  Google Scholar 

  • PPDB (2011). The Pesticide Properties Database (PPDB) developed by the Agriculture & Environment Research Unit (AERU), University of Hertfordshire, funded by UK National Sources and the EU-funded Footprint Project (FP6-SSP-022704). http://sitem.herts.ac.uk/aeru/footprint/index2.htm2011.

  • R Development Core Team. (2011). R: a language and environment for statistical computing, reference index version 2.11.1. http://www.r-project.org. Accessed 29 June 2011.

  • Rabiet, M., Margoum, C., Gouy, V., Carluer, N., & Coquery, M. (2010). Assessing pesticide concentrations and fluxes in the stream of a small vineyard catchment—effect of sampling frequency. Environmental Pollution, 158, 737–748.

    Article  CAS  Google Scholar 

  • Schäfer, R. B., Caquet, T., Siimes, K., Mueller, R., Lagadic, L., & Liess, M. (2007). Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Science of the Total Environment, 382, 272–285.

    Article  Google Scholar 

  • Schäfer, R. B., von der Ohe, P. C., Kuhne, R., Schüürmann, G., & Liess, M. (2011). Occurrence and toxicity of 331 organic pollutants in large rivers of north Germany over a decade (1994 to 2004). Environmental Science & Technology, 45, 6167–6174.

    Article  Google Scholar 

  • Schäfer, R. B., von der Ohe, P. C., Rasmussen, J., Kefford, B. J., Beketov, M. A., Schulz, R., & Liess, M. (2012). Thresholds for the effects of pesticides on invertebrate communities and leaf breakdown in stream ecosystems. Environmental Science & Technology, 46, 5134–5142.

    Article  Google Scholar 

  • Schulz, R. (2001a). Comparison of spraydrift- and runoff-related input of azinphos-methyl and endosulfan from fruit orchards into the Lourens River, South Africa. Chemosphere, 45, 543–551.

    Article  CAS  Google Scholar 

  • Schulz, R. (2001b). Rainfall-induced sediment and pesticide input from orchards into the Lourens River, Western Cape, South Africa: importance of a single event. Water Research, 35, 1869–1876.

    Article  CAS  Google Scholar 

  • Schulz, R. (2004). Field studies on exposure, effects and risk mitigation of aquatic nonpoint-source insecticide pollution—a review. Journal of Environmental Quality, 33, 419–448.

    Article  CAS  Google Scholar 

  • Schulz, R., Hauschild, M., Ebeling, M., Nanko-Drees, J., Wogram, J., & Liess, M. (1998). A qualitative field method for monitoring pesticides in the edge-of-field runoff. Chemosphere, 36, 3071–3082.

    Article  CAS  Google Scholar 

  • Schulz, R., & Liess, M. (1999). A field study of the effects of agriculturally derived insecticide input on stream macroinvertebrate dynamics. Aquatic Toxicology, 46, 155–176.

    Article  CAS  Google Scholar 

  • Schulz, R., Peall, S. K. C., Hugo, C., & Krause, V. (2001). Concentration, load and toxicity of spraydrift-borne azinphos-methyl at the inlet and outlet of a constructed wetland. Ecological Engineering, 18, 239–245.

    Article  Google Scholar 

  • Schwarzenbach, R. P., Escher, B. I., Fenner, K., Hofstetter, T. B., Johnson, C. A., von Gunten, U., et al. (2006). The challenge of micropollutants in aquatic systems. Science, 313, 1072–1077.

    Article  CAS  Google Scholar 

  • Senseman, S. A., Lavy, T. L., Mattice, J. D., Gbur, E. E., & Skulman, B. W. (1997). Trace level pesticide detections in Arkansas surface waters. Environmental Science & Technology, 31, 395–401.

    Article  CAS  Google Scholar 

  • Shires, S. W., & Bennett, D. (1985). Contamination and effects in freshwater ditches resulting from an aerial application of cypermethrin. Ecotoxicology and Environmental Safety, 9, 145–158.

    Article  CAS  Google Scholar 

  • Solomon, K., Giesy, J., & Jones, P. (2000). Probabilistic risk assessment of agrochemicals in the environment. Crop Protection, 19, 649–655.

    Article  Google Scholar 

  • Spurlock, F. (2002). Analysis of diazinon and chlorpyrifos surface water monitoring and acute toxicity bioassay data, 1991—2001. Sacramento: California Department of Pesticide Regulation, Environmental Hazards Assessment Program—Environmental Monitoring Branch

  • Spurlock, F., Bacey, J., Starner, K., & Gill, S. (2005). A probabilistic screening model for evaluating pyrethroid surface water monitoring data. Environmental Monitoring and Assessment, 109, 161–179.

    Article  CAS  Google Scholar 

  • Starner, K., Spurlock, F., Kelley, K., & Goh, K. S. (2011). Pesticides in surface water from agricultural regions of California 2006–2007. Report 238. Sacramento: California Environmental Protection Agency, California Department of Pesticide Regulation.

  • Stehle, S., Elsaesser, D., Gregoire, C., Imfeld, G., Niehaus, E., Passeport, E., et al. (2011). Pesticide risk mitigation by vegetated treatment systems: a meta-analysis. Journal of Environmental Quality, 40, 1068–1080.

    Article  CAS  Google Scholar 

  • Strobl, R. O., & Robillard, P. D. (2008). Network design for water quality monitoring of surface freshwaters: a review. Journal of Environmental Management, 87, 639–648.

    Article  Google Scholar 

  • Sturm, A., Wogram, J., Segner, H., & Liess, M. (2000). Different sensitivity to organophosphates of acetylcholinesterase from three-spined stickleback (Gaterosteus aculeatus). Environmental Toxicology and Chemistry, 19, 1607–1615.

    CAS  Google Scholar 

  • Süss, A., Bischoff, G., Mueller, A. C. W., & Buhr, L. (2006). Chemisch-biologisches Monitoring zu Pflanzenschutzmittelbelastungen und Lebensgemeinschaften in den Gräben des Alten Landes. Nachrichtenblatt Deutscher Pflanzenschutzdienst, 58, 28–42.

    Google Scholar 

  • Tauler, R., Azevedo, D. D., Lacorte, S., Cespedes, R., Viana, P., & Barcelo, D. (2001). Organic pollutants in surface waters from Portugal using chemometric interpretation. Environmental Technology, 22, 1043–1054.

    Article  CAS  Google Scholar 

  • Turnbull, A., Harrison, R., DiGuardo, A., Mackay, D., & Calamari, D. (1995). An assessment of the behavior of selected pesticides at ADAS Rosemaund. BCPC, 62, 87–92.

    CAS  Google Scholar 

  • U.S. Environmental Protection Agency (EPA). (2011). Initiative to revise the ecological assessment process for pesticides—about ecological risk assessment. http://www.epa.gov/oppefed1/ecorisk/. Accessed 5 Dec 2011.

  • Verdonck, F. A. M., Souren, A., van Asselt, M. B. A., Van Sprang, P. A., & Vanrolleghem, P. A. (2007). Improving uncertainty analysis in European Union risk assessment of chemicals. Integrated Environmental Assessment and Management, 3, 333–343.

    Article  Google Scholar 

  • Williams, R. J., Brooke, D., Matthiesen, P., Mills, M., Turnbull, A., & Harrison, R. M. (1995). Pesticide transport to surface waters within an agricultural catchment. Journal of the Institution of Water and Environmental Management, 9, 72–81.

    Article  CAS  Google Scholar 

  • Wilson, P. C., & Foos, J. F. (2006). Survey of carbamate and organophosphorous pesticide export from a south Florida (U.S.A.) agricultural watershed: implications of sampling frequency on ecological risk estimation. Environmental Toxicology and Chemistry, 25, 847–2852.

    Article  Google Scholar 

  • Wirtz, K., Bala, S., Amann, A., & Elbert, A. (2009). A promise extended—future role of pyrethroids in agriculture. Bayer CropScience Journal, 62, 145–158.

    Google Scholar 

  • Yu, S. J. (2008). The toxicology and biochemistry of insecticides. Boca Raton: CRC.

    Google Scholar 

Download references

Acknowledgments

This study has been funded by the German Society for the Advancement of Sciences (DFG SCHU 2271/6-1). The authors thank Engelbert Niehaus and Ralf B. Schäfer for valuable comments on this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Stehle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 99.9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stehle, S., Knäbel, A. & Schulz, R. Probabilistic risk assessment of insecticide concentrations in agricultural surface waters: a critical appraisal. Environ Monit Assess 185, 6295–6310 (2013). https://doi.org/10.1007/s10661-012-3026-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-3026-x

Keywords

Navigation