Skip to main content

Advertisement

Log in

The trace element content of top-soil and wild edible mushroom samples collected in Tuscany, Italy

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The amount of the trace elements As, Ba, Cd, Cr, Cu, Hg, Li, Mn, Ni, Pb, Rb, Se, Sr, and Zn was measured in top soils and edible mushrooms, Boletus edulis, Macrolepiota procera, collected at five distinct green microhabitats inside the Lucca province, North-Central Italy (years 2008–2009). Results showed a top soil element content within the Italian statutory limits. Concerning the amount of mushroom elements, we observed significant species-differences obtaining higher levels of Ni, Rb, and Se in B. edulis or As, Pb, Cu in M. procera. Bioaccumulation factors (BCFs: element in mushroom/element in soil) resulted species-dependent and element-selective: in particular, B. edulis preferentially accumulated Se (BCFs varying from 14 to 153), while M. procera mainly concentrated Cu (BCFs varying from 5 to 15). As well, both species displayed between-site BCF differences. By a multivariate principal component approach, cluster analysis (CA), we could resolve two main clusters of soil element composition, corresponding to the most ecologically divergent sites. Besides, CA showed no cluster relating to element contents of B. edulis at the different collection sites, while a separation in groups was found for M. procera composition with respect to harvesting locations, suggesting uptake systems, in this saprotrophic species, sensitive to microhabitat. Regarding consumer safety, Cd, Hg, Pb levels resulted sometime relevant in present samples, never reaching values from current literature on mushrooms collected in urban-polluted areas. Our findings encourage a deeper assessment of the molecular mechanisms of metal intake by edible mushrooms, encompassing genetic biochemical and geo-ecological variables, with particular awareness to element bioavailability in soils and fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alonso, J., Salgado, M. J., Garcia, M. A., & Melgar, M. J. (2000). Accumulation of mercury in edible macrofungi: influence of some factors. Archives of Environmental Contamination and Toxicology, 38(2), 158–162.

    Article  CAS  Google Scholar 

  • Alonso, J., Garcia, M., Pérez-López, M., & Melgar, M. J. (2003). The concentrations and bioconcentrations factors of copper and zinc in edible mushrooms. Archives of Environmental Contamination and Toxicology, 44(2), 180–188.

    Article  CAS  Google Scholar 

  • Anderson, R. A. (1998). Chromium, glucose intolerance and diabetes. Journal of the American College of Nutrition, 17(6), 548–555.

    CAS  Google Scholar 

  • Andreson, I., & Cairney, J. (2007). Ectomycorrizal fungi: exploring the mycelial frontier. FEMS Microbiology Reviews, 31(4), 338–406.

    Google Scholar 

  • Araya, M., Olivares, M., & Pizarro, F. (2007). Copper in human health. International Journal of Environmental Health, 1(4), 608–620.

    Article  CAS  Google Scholar 

  • Baptista, P., Ferreira, S., Soares, E., Coelho, V., & Bastos, M. D. L. (2009). Tolerance and stress response of Macrolepiota procera to nickel. Journal of Agricultural and Food Chemistry, 57, 7145–7152.

    Article  CAS  Google Scholar 

  • Bellion, M., Courbot, M., Jacob, C., Guinet, F., Blaudez, D., & Chalot, M. (2007). Metal induction of a Pxillus involutus metallothionein and its heterologous expression in Hebeloma cylindrosporum. New Phytologist, 174(1), 151–158.

    Article  CAS  Google Scholar 

  • Benbrahim, M., Denaix, L., Thomas, A. L., Balet, J., & Carnus, J. M. (2006). Metal concentrations in edible mushrooms following municipal sludge application on forest land. Environment and Pollution, 144(3), 847–854.

    Article  CAS  Google Scholar 

  • Borovitčka, J., & Řanda, Z. (2007). Distribution of iron, cobalt, zinc and selenium in macrofungi. Mycological Progress, 6(4), 249–259.

    Article  Google Scholar 

  • Borovitčka, J., Řanda, Z., Jelínek, E., Kotrba, P., & Dunn, C. E. (2007). Hyperaccumulation of silver by Amanita strobiliformis and related species of the section Lepidella. Mycological Research, 111(Pt 11), 1339–1344.

    Article  Google Scholar 

  • Brzostowski, A., Falandysz, J., Jarzińska, G., & Zhang, D. (2011a). Bioconcentration potential of metallic elements by Poison Pax (Paxillus involutus) mushroom collected at one site over four years. Journal of Environmental Science and Health, Part A, 46(4), 378–393.

    Article  CAS  Google Scholar 

  • Brzostowski, A., Jarzińska, G., Kojta, A. K., Wydmańska, D., & Falandysz, J. (2011b). Variations in metal levels accumulated in Poison Pax (Paxillus involutus) mushroom collected at one site over four years. Journal of Environmental Science and Health, Part A, 46(6), 581–588.

    Article  CAS  Google Scholar 

  • Byrne, A. R., Ravnik, V., & Kosta, L. (1976). Trace element concentrations in higher fungi. Science of the Total Environment, 6(1), 65–78.

    Article  CAS  Google Scholar 

  • Campos, J. A., Tejera, N. A., & Sanchez, C. J. (2009). Substrate role in the accumulation of heavy metals in sporocarps of wild fungi. Biometals, 22(5), 835–841.

    Article  CAS  Google Scholar 

  • Carvalho, M. L., Pimentel, A. C., & Fernandes, B. (2005). Study of heavy metal in wild edible mushrooms under different pollution conditions by X-ray fluorescence spectrometry. Analytical Sciences, 21(7), 747–750.

    Article  CAS  Google Scholar 

  • Çayir, A., Coşkun, M., & Coşkun, M. (2010). The heavy metal content of wild edible mushroom samples collected in Canakkale province, Turkey. Biological Trace Element Research, 134(2), 212–219.

    Article  Google Scholar 

  • Chen, X. H., Zhou, H. B., & Qiu, G. Z. (2009). Analysis of several heavy metals in wild edible mushrooms from regions of China. Bulletin of Environmental Contamination and Toxicology, 83(2), 280–285.

    Article  CAS  Google Scholar 

  • Chudzyński, K., & Falandysz, J. (2008). Multivariate analysis of element contents of Larch Bolete (Suillus grevillei) mushroom. Chemosphere, 78, 1230–1239.

    Article  Google Scholar 

  • Chudzyński, K., Bielawski, L., & Falandysz, J. (2009). Mercury Bio-concentrazion potential of Larch Bolete, Suillus grevillei, Mushroom. Bulletin of Environmental Contamination and Toxicology, 83(2), 275–279.

    Article  Google Scholar 

  • Chudzyński, K., Jarzyńka, G., Stefańska, A., & Falandysz, J. (2011). Mercury content and bio-concentration potential of Slippery Jack, Suillus lutei, mushroom. Food Chemistry, 125, 986–990.

    Article  Google Scholar 

  • Cobbett, C., & Goldsbrough, P. (2002). Phytochelatins and metallothioneis: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53, 159–182.

    Article  CAS  Google Scholar 

  • Cocchi, L., Vescovi, L., Petrini, L. E., & Petrini, O. (2006). Heavy metals in edible mushrooms in Italy. Food Chemistry, 98(2), 277–284.

    Article  CAS  Google Scholar 

  • Collin-Hansen, C., Andersen, R. A., & Steinnes, E. (2003). Isolation and N-terminal sequencing of a novel cadmium-binding protein from Boletus edulis. Journal of de Physique IV France, 107(1), 311–314.

    Article  CAS  Google Scholar 

  • Collin-Hansen, C., Pedersen, S., Andersen, R., & Steinnes, E. (2007). First report of phytochelatins by metal exposure in Boletus edulis. Mycologia, 99(2), 161–174.

    Article  CAS  Google Scholar 

  • Courbot, M., Diez, L., Ruotolo, R., Chalot, M., & Leroy, P. (2004). Cadmium responsive thiols in the ectomychorrizal fungus Paxillus involutus. Applied and Environmental Microbiology, 70(12), 7413–7417.

    Article  CAS  Google Scholar 

  • Demirbas, A. (2001). Concentrations of 21 metals in 18 species of mushrooms growing in the East Blak Sea region. Food Chemistry, 75(4), 453–457.

    Article  CAS  Google Scholar 

  • Doğan, H. H., Şanda, M. A., Uyanöz, R., Ozturk, C., & Cetin, U. (2006). Contents of metals in some wild mushrooms—its impact in human health. Biological Trace Element Research, 110(1), 79–94.

    Article  Google Scholar 

  • EU (2008). Commission regulation (EC) N° 629/2008 of 2 july 2008 amending Regulation (EC) N°1881/2006 setting maximum levels for certain contaminants in foodstuffs. Office J European Union 3.7.2008 L173/6-9 (Text at EEA relevance).

  • Falandysz, J. (2008). Selenium in edible mushrooms. Journal of Environmental Science and Health, Part C, 26(3), 256–299.

    CAS  Google Scholar 

  • Falandysz, J., & Chwir, A. (1997). The concentrations and bioconcentration factors of mercury in mushrooms from the Mierzeja Wiślana sand-bar Northern Poland. Science of the Total Environment, 203, 221–228.

    Article  CAS  Google Scholar 

  • Falandysz, J., & Gucia, M. (2008). Bioconcentration factors of mercury by Parasol mushroom (Macrolepiota procera). Environmental Geochemistry and Health, 30, 121–125.

    Article  CAS  Google Scholar 

  • Falandysz, J., Szymczyk, K., Ichihashi, H., Bielawski, L., Gucia, M., Frankowska, A., et al. (2001). ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Additives and Contaminants, 18, 503–513.

    CAS  Google Scholar 

  • Falandysz, J., Bielawski, L., Kawano, M., Brzostowski, A., & Chudzyński, K. (2002). Mercury in mushrooms and soil from the Wieluńska Upland in south-central Poland. Journal of Environmental Science and Health, Part A, 37(8), 1409–1420.

    Article  Google Scholar 

  • Falandysz, J., Frankowska, A., & Mazur, A. (2007a). Mercury and its bioconcentration factors in King Bolete (Boletus edulis). Bull Fr Journal of Environmental Science and Health, Part A, 42(14), 2089–2095.

    Article  CAS  Google Scholar 

  • Falandysz, J., Gucia, M., & Mazur, A. (2007b). Content and bioconcentration factors of mercury by Parasol mushroom Macrolepiota procera. Journal of Environmental Science and Health, Part B, 42(6), 735–740.

    Article  CAS  Google Scholar 

  • Falandysz, J., Kunito, T., Kubota, R., Bielawski, L., Frankowska, A., Falandysz, J., et al. (2008a). Multivariate characterization of elements accumulated in King Bolete Boletus edulis mushroom at lowland and high mountain regions. Journal of Environmental Science and Health, Part A, 43, 1692–1699.

    Article  CAS  Google Scholar 

  • Falandysz, J., Kunito, T., Kubota, R., Gucia, M., Mazur, A., Falandysz, J., et al. (2008b). Some mineral constituents of Parasol mushroom Macrolepiota Procera. Journal of Environmental Science and Health, Part B, 43, 187–192.

    Article  CAS  Google Scholar 

  • Falandysz, J., Frankowska, A., Jarzyńska, G., Dryźalowska, A., Kojta, A. K., & Zhang, D. (2011). Survey on composition and bioconcentration potential of 12 metallic elements in King Bolete (B. edulis) mushroom that emerged at 11 spatially distant sites. Journal of Environmental Science and Health, Part B, 46(3), 231–246.

    Article  CAS  Google Scholar 

  • Food and Nutrition Board (FNB). (2001). Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc (pp. 1–28). Institute of Medicine, Washington: National Academy Press.

    Google Scholar 

  • Frankowska, A., Ziókowska, J., Bielawski, L., & Falandysz, J. (2010). Profile and bioconcentration of minerals by King Bolete (Boletes edulis) from the Płocka Dale in Poland. Food Additives and Contaminants, Part B, 3(1), 1–6.

    Article  CAS  Google Scholar 

  • Gadd, G. M. (2007). Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycological Research, 111(Pt1), 3–49.

    Article  CAS  Google Scholar 

  • Garcia, M. A., Alonso, J., & Melgar, M. J. (2009). Lead in edible mushrooms. Levels and bioaccumulation factors. Journal of Hazardous Materials, 167(1–3), 777–783.

    Article  CAS  Google Scholar 

  • Gençcelep, H., Uzun, Y., Tunçturk, Y., & Demirel, K. (2009). Determination of mineral contents of wild-grown edible mushrooms. Food Chemistry, 113(4), 1033–1036.

    Article  Google Scholar 

  • Gucia, M., Jarzyńska, G., Rafal, E., Roszak, M., Kojta, A. K., Osiej, I., et al. (2011). Multivariate analysis of mineral constituents of edible Parasol mushroom (Macrolepiota procera) and soils beneath fruiting bodies collected from Northern Poland. Environmental Science and Pollution Research. doi:10.1007/s11356-011-0574-5.

  • Isildak, O., Turkekul, I., Elmstas, M., & Aboul-Enein, H. (2007). Bioaccumulation of heavy metals in some wild-grown edible mushrooms. Analytical Letters, 40(6), 1099–1116.

    Article  CAS  Google Scholar 

  • Jarzyńska, G., & Falandysz, J. (2011). The determination of mercury in mushrooms by CV-AAS and ICP-AES techniques. Journal of Environmental Science and Health, Part A, 46(6), 569–573.

    Article  Google Scholar 

  • JECFA. Joint FAO/WHO Expert Committee on Food Additives. Seventy-second meeting. Rome, 16–25 February 2010. Summary and Conclusions. JECFA/72/SC. Food and Agriculture Organization of the United Nations World Health Organization. Issues 16th March 2010.

  • Kalač, P. (2009). Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chemistry, 113(1), 9–16.

    Article  Google Scholar 

  • Kalač, P. (2010). The trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chemistry, 122(1), 2–15.

    Article  Google Scholar 

  • Kalač, P., & Svoboda, L. (2000). A review of trace element concentrations in edible mushrooms. Food Chemistry, 69(3), 273–281.

    Article  Google Scholar 

  • Kalač, P., Svoboda, L., & Havlíčková, B. (2004). Contents of detrimental metals mercury, cadmium and lead in wild growing edible mushrooms: a review. Energy Education Science and Technology, 13(1), 31–38.

    Google Scholar 

  • Latiff, L. A., Daran, A. B. M., & Mohamed, A. B. (1996). Relative distribution of minerals in the pileus and stalk of the some selected edible mushrooms. Food Chemistry, 56(2), 115–121.

    Article  CAS  Google Scholar 

  • Li, T., Wang, Y., Zhang, J., Zhao, Y., & Liu, H. (2011). Trace element content of Boletus tomentipes mushroom collected from Yunnan, China. Food Chemistry, 127, 1828–1830.

    Article  CAS  Google Scholar 

  • Manzi, P., Aguzzi, A., & Pizzoferrato, L. (2001). Nutritional value of mushrooms widely consumed in Italy. Food Chemistry, 73(3), 321–325.

    Article  CAS  Google Scholar 

  • Michelot, D., Siobud, E., Dore, J. C., Viel, C., & Poirier, F. (1998). Update on metal content profiles in mushrooms: toxicological implications and tentative approach to the mechanisms of bioaccumulation. Toxicon, 36(12), 1997–2012.

    Article  CAS  Google Scholar 

  • Mutanen, M. (1986). Bioavailability of selenium in mushrooms, Boletus edulis, to young women. International Journal for Vitamin and Nutrition Research, 56(3), 297–301.

    CAS  Google Scholar 

  • Nikkarinen, M., & Mertanen, E. (2004). Impact of geological origin on trace element composition of edible mushrooms. Journal of Food Composition and Analysis, 17(3–4), 301–310.

    Article  CAS  Google Scholar 

  • Nonnis Marzano, F., Bracchi, P. G., & Pizzetti, P. (2001). Radioactive and conventional pollutants accumulated by edible mushrooms (Boletus sp.) are useful indicators of species origin. Environmental Research Section A, 85(3), 260–264.

    Article  Google Scholar 

  • Olumuyiwa, S. F., Oluwatoyin, O. A., Olanrewaja, O., & Adewusi, R. E. (2007). Chemical composition and toxic trace element composition of some Nigerian edible wild mushrooms. International Journal of Food Science and Technology, 43(1), 24–29.

    Google Scholar 

  • Ouzouni, P. K., Veltsiastas, P. G., Paleologos, E. K., & Riganakos, K. A. (2007). Determination of metal content in wild edible mushroom species from region of Greece. Journal of Food Composition and Analysis, 20(6), 480–486.

    Article  CAS  Google Scholar 

  • Palapala, V. A., Aimi, T., Inatomi, S., & Morinaga, T. (2002). ITS-PCR-RFLP method for distinguishing commercial cultivars of edible mushroom, Flammulina velutipes. Journal of Food Science, 67(7), 2486–2490.

    Article  CAS  Google Scholar 

  • Petrini, O., Cocchi, L., Vescovi, L., & Petrini, L. (2009). Chemical elements in mushrooms: their potential taxonomic significante. Mycological Progress, 8(3), 171–180.

    Article  Google Scholar 

  • Rudawska, M., & Leski, T. (2005). Macro- and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland. Food Chemistry, 92(3), 499–506.

    Article  CAS  Google Scholar 

  • Schmitt, J., & Meisch, H. (1985). Cadmium in mushrooms-distribution, growth effects and binding. Trace Elements in Medicine, 2, 163–166.

    CAS  Google Scholar 

  • Soylak, M., Tuzen, M., & Mendil, D. (2005). Determination of trace metals in mushroom and plant samples from Kayseri, Turkey. Food Chemistry, 92(4), 649–652.

    Article  CAS  Google Scholar 

  • Stern, B. R., Solioz, M., Krewsk, D., Aggett, P., Aw, T. C., Baker, S., et al. (2007). Copper and human health: genetics, biochemistry and strategies for modeling dose–response relationship. Journal of Toxicology & Environmental Health Part B, 10(3), 157–222.

    Article  CAS  Google Scholar 

  • Stijve, T., Noorloos, T., Byrne, A. R., Slejkovec, Z., & Goessler, W. (1998). High selenium levels in edible Albatrellus mushrooms. Deutsche Lebensm Runds, 94(8), 275–279.

    CAS  Google Scholar 

  • Sunde, R. A., & Raines, A. M. (2011). Selenium regulation of the selenoprotein and nonselenoprotein transcriptomes in rodents. Advances in Nutrition, 2(2), 138–150.

    CAS  Google Scholar 

  • Suzuki, K. T. (2005). Metabolomics of selenium: Se metabolites based on speciation studies. Journal of Health Sciences, 51(2), 107–114.

    Article  CAS  Google Scholar 

  • Svoboda, L., & Chrastný, V. (2008). Levels of eight trace elements in edible mushrooms from a rural area. Food Additives and Contaminants, 25(1), 51–58.

    Article  CAS  Google Scholar 

  • Szynkowska, M. I., Pawlaczyk, A., Albinska, J., & Paryjczak, T. (2008). Comparison of accumulation ability of toxicologically important metals in caps and stalks in chosen mushrooms. Polish Journal of Chemistry, 82(1–2), 313–319.

    CAS  Google Scholar 

  • Thomet, U., Vogel, E., & Krähenbühl, U. (1999). The uptake of cadmium and zinc by mycelia and their accumulation in mycelia and fruiting bodies of edible mushrooms. European Food Research and Technology, 209(5), 317–324.

    Article  CAS  Google Scholar 

  • Turan, B., Acan, N. L., Ulusu, N. N., & Tezcann, E. F. (2001). A comparative study on effect of dietary selenium and vitamin E on some antioxidant enzyme activities of liver and brain tissues. Biological Trace Element Research, 81(2), 141–152.

    Article  CAS  Google Scholar 

  • Tuzen, M. (2003). Determination of heavy metals in soil, mushroom and plant samples by atomic adsorption spectrometry. Microchemical Journal, 74(3), 289–297.

    Article  CAS  Google Scholar 

  • Tuzen, M., Sesli, E., & Soylak, M. (2007). Trace element levels of mushrooms species from East Black Sea region of Turkey. Food Control, 18(7), 806–810.

    Article  CAS  Google Scholar 

  • Vetter, J. (1993). Chemical composition of eight edible mushrooms. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 196, 224–227.

    Article  CAS  Google Scholar 

  • Vetter, J. (1994). Data on arsenic and cadmium contents of some common mushrooms. Toxicon, 32(1), 11–15.

    Article  CAS  Google Scholar 

  • Vetter, J. (2004). Arsenic content of some edible mushroom species. European Food Research and Technology, 219(1), 71–74.

    Article  CAS  Google Scholar 

  • Vetter, J. (2005). Mineral composition of basidiomes of Amanita species. Mycological Research, 109(6), 746–750.

    Article  CAS  Google Scholar 

  • Vetter, J., & Siller, I. (1997). Ásványi anyagok mennyiségének alakulása a gomba terötestben (Macrolepiota procera). Mikolódial Közlemények, 36, 33–39 (in Hungarian).

    Google Scholar 

  • WHO (1982) International Program on Chemical safety (IPCS INCHEM). Joint FAO/WHO expert committee on food additives (JECFA), safety evaluation of certain food additives and contaminants, Report N° TRS 638-JECFA 26/31, WHO, Geneva.

  • WHO (1993) International program on chemical safety (IPCS INCHEM). Joint FAO/WHO expert committee on food additives (JECFA), safety evaluation of certain food additives and contaminants, Report N° TRS 837-JECFA 41/28, WHO, Geneva.

  • Wu, L. (2004). Review of 15 years of research on ecotoxicology and remediation of land contaminated by agricultural drainage sediment rich in Se. Ecotoxicology and Environmental Safety, 57(3), 257–269.

    Article  CAS  Google Scholar 

  • Wuilloud, R. G., Kannamkumarath, S. S., & Caruso, J. A. (2004). Multielemental speciation analysis of fungi porcini (Boletus edulis) mushroom by size exclusion liquid chromatography with sequential on-line UV-ICP-MS detection. Journal of Agricultural and Food Chemistry, 52(5), 1315–1322.

    Article  CAS  Google Scholar 

  • Zabowski, D., Zasoski, R. J., Littke, W., & Ammirati, J. (1990). Metal content of fungal sporocarps from urban, rural and sludge-treated sites. Journal of Environmental Quality, 19(3), 372–377.

    Article  CAS  Google Scholar 

  • Zhang, D., Gao, T., Ma, P., Luo, Y., & Pengcheng, S. (2008). Bioaccumulation of heavy metal in wild growing mushrooms from Liangshan Yi Nationality autonomous Prefecture, China. Wuhan University Journal of Natural Sciences, 13(2), 267–272.

    Article  CAS  Google Scholar 

  • Zhang, D., Frankowska, A., Jarzyńska, G., Kojta, A. K., Drewnowska, M., Wydmańska, D., et al. (2010). Metals of King Bolete (Boletus edulis) collected at the same site over two years. African Journal of Agricultural Research, 5(22), 3050–3055.

    Google Scholar 

  • Zheng, H., & Combs, G. F. (2008). Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion. The Journal of Nutritional Biochemistry, 19(1), 1–7.

    Article  Google Scholar 

  • Zimmermanovà, K., Svoboda, L., & Kalač, P. (2001). Mercury, cadmium, lead and copper contents in fruiting bodies of selected edible mushrooms in contaminated Middle Spis region, Slovakia. Ekol. (Bratislava), 20(4), 440–446.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gino Giannaccini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannaccini, G., Betti, L., Palego, L. et al. The trace element content of top-soil and wild edible mushroom samples collected in Tuscany, Italy. Environ Monit Assess 184, 7579–7595 (2012). https://doi.org/10.1007/s10661-012-2520-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2520-5

Keywords

Navigation