Skip to main content
Log in

Heavy metal distribution in Laportea peduncularis and growth soil from the eastern parts of KwaZulu-Natal, South Africa

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Laportea peduncularis is a medicinal plant consumed by the native communities in South Africa. Due to its oral consumption, its potential for harming the human health and the distribution of metals in the leaves of L. peduncularis as a function of soil characteristics were evaluated. Broadly, the concentrations of metals in the soil were in decreasing order of Fe > Ca > Mg > Mn > Zn > Cr > Cu > Ni > As > Co > Cd > Pb. Low-molecular-weight organic acid, calcium chloride, and ethylenediaminetetraacetic acid extraction methods were employed to assess for exchangeable forms of metals in the soil. Geoaccumulation indices and enrichment factors showed no contamination or enrichment for most of the heavy metals studied except for Cd, which showed moderate contamination and significant enrichment at Mona, KwaZulu-Natal. Principal component and cluster analyses revealed that As, Cd, Fe, and Ni in the soil came from the same source, whilst Cu, Pb, and Zn in the soil were from a common origin. Correlation analysis showed significantly positive correlation between heavy metals As, Cd, Fe, and Ni in the soil, as well as between Cu, Pb, and Zn, confirming the metals’ common origin. Concentrations of metals in plants and soil were influenced by site, but the availability and uptake of the metals solely depended on the plant’s inherent controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Dousari, A. S., Majki, K., Moustafa, S., & Al-Saleh, E. (2012). Effects of atmospheric lead on soil microbata in Kuwait. In C. A. Brebbia & T. S. Chon (Eds.), Environmental impact (p. 486). United Kingdom: Wits Press.

    Google Scholar 

  • Cataldo, D. A., Garland, T. R., & Wildung, R. E. (1983). Cadmium uptake kinetics in intact soybean plants. Plant Physiology, 73, 844–848.

    Article  CAS  Google Scholar 

  • Chapman, H. D. (1965). Cation exchange capacity. In C. A. Black (Ed.), Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 891–901). American Society of Agronomy: Madison, Wisconsin.

    Google Scholar 

  • Fageria, N. K., Baligar, V. C., & Wright, R. J. (1990). Iron nutrition of plants: an overview on the chemistry and physiology of its deficiency and toxicity. Psequisa Agropecuária Brasileira, 25(4), 553–570.

    Google Scholar 

  • Feng, M., Shan, Q., Zheng, S., & Wen, B. (2005). Comparison of rhizosphere-based method with other one-step extraction methods for assessing the bioavailability of soil metals to wheat. Chemosphere, 59, 939–949.

    Article  CAS  Google Scholar 

  • Fuentes, A., Lloréns, M., Sáez, J., Soler, A., Aquilar, M. I., Ortuño, J. F., & Meseguer, V. F. (2004). Simple and sequential extractions of heavy metals from different sewage sludges. Chemosphere, 54, 1039–1047.

    Article  CAS  Google Scholar 

  • Hernandez, L., Probst, A., Probst, J. L., & Ulrich, E. (2003). Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. Science of the Total Environment, 312, 195–219.

    Article  CAS  Google Scholar 

  • Herselmann, J. E., Steyn, C. E., & Fey, M. V. (2005). Baseline concentration of Cd, Co, Cr, Cu, Pb, Ni and Zn in surface soils of South Africa. South African Journal of Science, 101, 509–512.

    Google Scholar 

  • Houba, V. J. G., Temminghoff, E. J. M., Gaikhorst, G. A., & van Vark, W. (2000). Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Communications in Soil Science and Plant Analysis, 31(9&10), 1299–1396.

    Article  CAS  Google Scholar 

  • Hu, Y., Liu, X., Bai, J., Shih, K., Zeng, E. Y., & Cheng, H. (2013). Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environmental Science and Pollution Research, 20, 6150–6159.

    Article  CAS  Google Scholar 

  • Huang, J. W., & Chen, J. (2003). Role of pH in phytoremediation of contaminated soils. In Z. Rengel (Ed.), Handbook of soil acidity (p. 453). New York: Marcel Dekker Inc.

    Google Scholar 

  • Iqbal, J., & Shah, M. H. (2014). Occurrence, risk assessment, and source apportionment of heavy metals in surface sediments from Khanpur Lake, Pakistan. Journal of Analytical Science and Technology, 5(28), 1–12.

    Google Scholar 

  • Ivanciuc, T., Ivanciuc, O., & Klein, D. J. (2006). Modeling the bioconcentration factors and bioaccumulation factors of polychlorinated biphenyls with posetic quantitative super-structure/activity relationships (QSSAR). Molecular Diversity, 10(2), 133–145.

    Article  CAS  Google Scholar 

  • Jonnalagadda, S. B., Kindness, A., Kubayi, S., & Cele, M. N. (2008). Macro, minor and toxic elemental uptake and distribution in Hypoxis hemerocallidea, “the African potato”—an edible medicinal plants. Journal of Environmental Science and Health. Part. B, 43, 271–280.

    Article  CAS  Google Scholar 

  • Krishna, A. K., & Govil, P. K. (2007). Soil contamination due to heavy metals from an industrial area of Surat, Gujarat, Western India. Environmental Monitoring and Assessment, 124, 263–275.

    Article  CAS  Google Scholar 

  • Kučak, A., & Blanuša, M. (1998). Comparison of two extraction procedures for the determination of trace metals in soil by atomic absorption spectrometry. Archives of Industrial Hygiene and Toxicology, 49(4), 327–334.

    Google Scholar 

  • Mahlangeni, N., Moodley, R., & Jonnalagadda, S. B. (2012). Soil nutrient content on elemental uptake and distribution in sweet potatoes. International Journal of Vegetable Science, 18, 245–259.

    Article  Google Scholar 

  • Marschner, M. (1995). Mineral nutrition of higher plants (p. 657). London: Academic Press.

    Google Scholar 

  • McGrath, D. (1996). Application of single and sequential extraction procedures to polluted and unpolluted soils. The Science of the Total Environment, 178, 37–44.

    Article  CAS  Google Scholar 

  • McLaughlin, M. J., Hamon, R. E., McLaren, R. G., Speir, T. W., & Rogers, S. L. (2000). Review: bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand. Australian Journal of Soil Research, 38, 1037–1086.

    Article  CAS  Google Scholar 

  • Mendiola, L. L., Dominguez, M. C. D., & Sandoval, M. R. G. (2008). Environmental assessment of active tailings pile in the state of Mexico (Central Mexico). Research Journal of Environmental Sciences, 2(3), 197–208.

    Article  CAS  Google Scholar 

  • Moodley, R., Koorbanally, N., & Jonnalagadda, S. B. (2012). Elemental composition and fatty acid profile of the edible fruits of Amatungula (Carissa macrocarpa) and impact of soil quality on chemical characteristics. Analytica Chimica Acta, 730, 33–41.

    Article  CAS  Google Scholar 

  • Moodley, R., Koorbanally, N., & Jonnalagadda, S. B. (2013). Elemental composition and nutritional value of edible fruits of Harpephyllum caffrum and impact of soil quality on their chemical characteristics. Journal of Environmental Science and Health. Part. B, 48, 539–547.

    Article  CAS  Google Scholar 

  • Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2(3), 108–118.

    Google Scholar 

  • Nickel, S., Hertel, A., Pesch, R., Schröder, W., Steinnes, E., & Uggerud, H. T. (2015). Correlating concentrations of heavy metals in atmospheric deposition with respective accumulation in moss and natural surface soil for ecological land classes in Norway between 1990 and 2010. Environmental Science and Pollution Research, 22, 8488–8498.

    Article  CAS  Google Scholar 

  • Novozamsky, I., Lexmond, T. M., & Houba, V. J. G. (1993). A single extraction procedure of soil for evaluation of uptake f some heavy metals by plants. International Journal of Environmental Analytical Chemistry, 51, 47–58.

    Article  CAS  Google Scholar 

  • Nowak, B. (1998). Contents and relationship of elements in human hair for a non-industrialised population in Poland. Science of the Total Environment, 209(1), 59–68.

    Article  CAS  Google Scholar 

  • Oliver, D. P., Bramley, R. G. V., Riches, D., Porter, I., & Edwards, J. (2013). Review: soil physical and chemical properties as indicators of soil quality in Australian viticulture. Australian Journal of Grape and Wine Research, 19, 129–139.

    Article  CAS  Google Scholar 

  • Oze, C., Skinner, C., Schroth, A., & Coleman, R. G. (2008). Growing up green on serpentine soils: biogeochemistry of serpentine vegetation in the Central Coast Range of California. Applied Geochemistry, 23, 3391–3403.

    Article  CAS  Google Scholar 

  • Quattrocchi, U. (2012). CRC world dictionary of medicinal and poisonous plants (p 2219). Boca Raton: Taylor and Francis Group.

    Book  Google Scholar 

  • Quevauriller, P., Lachica, M., Barahona, E., Rauret, G., Ure, A., Gomez, A., & Muntau, H. (1996). Interlaboratory comparison of EDTA and DTPA procedures prior to certification of extractable trace elements in calcareous soil. Science of the Total Environment, 178, 137–132.

    Google Scholar 

  • Reddy, M., Moodley, R., & Jonnalagadda, S. B. (2014). Elemental uptake and distribution of nutrients in avocado mesocarp and the impact of soil quality. Environmental Monitoring and Assessment, 186, 4519–4529.

    Article  CAS  Google Scholar 

  • Schippers, R. R. (2000). African indigenous vegetables: an overview of the cultivated species (p 214). Chatham, UK: Natural Resource Institute.

    Google Scholar 

  • Schoenholtz, S. H., Van Miegroet, H., & Burger, J. A. (2000). A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. Forest and Ecology Management, 138, 335–356.

    Article  Google Scholar 

  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39, 611–637.

  • Tahar, K., & Keltoum, B. (2011). Effects of heavy metals pollution in soil and plant in industrial area, West Algeria. Journal of the Korean Chemical Society, 55(6), 1018–1023.

    Article  CAS  Google Scholar 

  • Takáč, P., Szabová, T., Kozáková, L., & Benková, M. (2009). Heavy metals and their bioavailability from soils in the long-term polluted Central Spiš region of SR. Plant, Soil and Environment, 55(4), 167–172.

    Google Scholar 

  • Ure, A. M. (1996). Single extraction schemes for soil analysis and related applications. The Science of the Total Environment, 178, 3–10.

    Article  CAS  Google Scholar 

  • van Rensburg, W. S. J., van Averbeke, W., Slabbert, R., Faber, M., van Jaarsveld, P., van Heerden, I., Wenhold, F., & Oelofse, A. (2007). African leafy vegetables in South Africa. Water S.A, 33(3), 317–326.

    Google Scholar 

  • Violante, A., Cozzolino, V., Perelomov, L., Caporale, A. G., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environment. Journal of Soil Science and Plant Nutrition, 10(3), 268–292.

    Article  Google Scholar 

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • Wu, Z., Monro, A. K., Milne, R. I., Wanga, H., Yi, T., Liu, J., & Li, D. (2013). Molecular phylogeny of the nettle family (Urticaceae) inferred from the multiple loci of three genomes and extensive generic sampling. Molecular Phylogenetics and Evolution, 69, 814–827.

    Article  Google Scholar 

  • Zaccherio, M. T., & Finzi, A. C. (2007). Atmospheric deposition may affect northern hardwood forest composition by altering soil nutrient supply. Ecological Applications, 17(7), 1929–1941.

    Article  Google Scholar 

  • Zhang, J., & Liu, C. L. (2002). Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes estuarine. Coastal and Shelf Science, 54(6), 1051–1070.

    Article  CAS  Google Scholar 

  • Zhang, S., Shan, X., & Li, F. (1999). Low-molecular weight acids as extractant to predict plant bioavailability to rare earth elements. International Journal of Environmental Analytical Chemistry, 76(4), 283–294.

    Article  Google Scholar 

  • Zhou, M., Lv, Y., Shen, R., Zhou, Z., Zhou, J., Hu, S., & Zhou, X. (2014). Assessment of heavy metal pollution in surface soils of Hankou region in Wuhan, China. In F. Bian & Y. Xie (Eds.), Geo-informatics in resource management and sustainable ecosystem (p.742). Springer: 2nd international conference proceedings October 3–5, Ypsilanti.

    Google Scholar 

  • Zhu, Q. H., Huang, D. Y., Liu, S. L., Luo, Z. C., Zhu, H. H., Zhou, B., Lei, M., Rao, Z. X., & Cao, X. L. (2012). Assessment of single extraction methods for evaluating the immobilization effect of amendments on cadmium in contaminated acidic paddy soil. Plant, Soil and Environment, 58(2), 98–103.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the National Research Foundation (NRF) for financial support and the School of Chemistry and Physics at UKZN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreekantha B. Jonnalagadda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahlangeni, N.T., Moodley, R. & Jonnalagadda, S.B. Heavy metal distribution in Laportea peduncularis and growth soil from the eastern parts of KwaZulu-Natal, South Africa. Environ Monit Assess 188, 76 (2016). https://doi.org/10.1007/s10661-015-5044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-5044-y

Keywords

Navigation