Skip to main content
Log in

Microbial preference for different size classes of organic carbon: a study from Antarctic snow

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Significance of carbon cycling in polar ecosystems is well recognized. Yet, bacteria in surface snow have received less attention in terms of their potential in carbon cycling. Here, we present results on carbon utilization by bacterial communities in three surface snow samples from Antarctica collected along a coastal to inland transect. Microcosm studies were conducted over 8 days at 5 ± 1°C to study carbon metabolism in different combinations of added low molecular weight (LMW (glucose, <1 kDa)) and high molecular weight (HMW (starch, >1 kDa)) substrates (final 20 ppm). The total organic carbon (TOC) in the snow samples decreased with time at rates ranging from non-detectable to 1.4 ppm day−1 with rates highest in snow samples from inland region. In addition, carbon utilization studies were also carried out with bacterial isolates LH1, LH2, and LH4 belonging to the genus Cellulosimicrobium, Bacillus, and Ralstonia, respectively, isolated from the snow samples. Studies with strain LH2 in different amendments of glucose and starch showed that TOC decreased with time in all amendments at a rate of 0.9–1.5 ppm day−1 with highest rates of 1.4–1.5 ppm day−1 in amendments containing a higher proportion of starch. The bacterial isolates were also studied to determine their ability to utilize other LMW and HMW compounds. They utilized diverse substrates like carbohydrates, amino acids, amines, amides, complex polymers, etc., of molecular mass <100 Da, 100–500 Da, >500 Da–1 kDa, and >1 kDa preferring (up to 31 times) substrates with mass of >1 kDa than <1 kDa. The ability of bacteria in snow to utilize diverse LMW and HMW substrates indicates that they could be important in the uptake of similar compounds in snow and therefore potentially govern snow chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amato, P., Hennebelle, R., Magand, O., Sancelme, M., Delort, A.-M., Barbante, C., et al. (2007). Bacterial characterization of the snow cover at Spitzberg, Svalbard. FEMS Microbiology Ecology, 59, 255–264.

    Article  CAS  Google Scholar 

  • Amblard, C. (1991). Carbon heterotrophic activity of microalgae and cyanobacteria: ecophysiological significance. L’Année Biologique, 30(2), 73–107.

    CAS  Google Scholar 

  • Amon, R. M. W., & Benner, R. (1996). Bacterial utilization of different size classes of dissolved organic matter. Limnology and Oceanography, 14(1), 41–51.

    Article  Google Scholar 

  • Antony, R., Krishnan, K. P., Thomas, S., Abraham, W. P., & Thamban, M. (2009). Phenotypic and molecular identification of Cellulosimicrobium cellulans isolated from Antarctic snow. Antonie Van Leeuwenhoek, 96(4), 627–634.

    Article  CAS  Google Scholar 

  • Antony, R., Thamban, M., Krishnan, K. P., & Mahalinganathan, K. (2010). Is cloud seeding in coastal Antarctica linked to bromine and nitrate variability in snow? Environmental Research Letters, 5, 014009.

    Article  Google Scholar 

  • Borsodi, A. K., Makk, J., Rusznyák, A., Vajna, B., Taba, G., & Márialigeti, K. (2007). Phenotypic characterization and molecular taxonomic studies on Bacillus and related isolates from Phragmites australis periphyton. Aquatic Botany, 86, 243–252.

    Article  CAS  Google Scholar 

  • Brammar, W. J., McFarlane, N. D., & Clarke, P. H. (1966). The uptake of aliphatic amides by Pseudomonas aeruginosa. Journal of General Microbiology, 44, 303–309.

    Article  CAS  Google Scholar 

  • Brock, T. D., & Clyne, J. (1984). Significance of algal excretory products for growth of Epilimnetic bacteria. Applied and Environmental Microbiology, 47(4), 731–734.

    CAS  Google Scholar 

  • Calace, N., Cantafora, E., Mirante, S., Petronio, B. M., & Pietroletti, M. (2005). Transport and modification of humic substances present in Antarctic snow and ancient ice. Journal of Environmental Monitoring, 7, 1320–1325.

    Article  CAS  Google Scholar 

  • Carpenter, E. J., Lin, S., & Capone, D. G. (2000). Bacterial activity in South Pole snow. Applied and Environmental Microbiology, 66(10), 4514–4517.

    Article  CAS  Google Scholar 

  • Cincinelli, A., Stortini, A. M., Checchini, L., Martellini, T., Bubbaa, M. D., & Lepria, L. (2005). Enrichment of organic pollutants in the sea surface microlayer (SML) at Terra Nova Bay, Antarctica: influence of SML on superficial snow composition. Journal of Environmental Monitoring, 7, 1305–1312.

    Article  CAS  Google Scholar 

  • Facchini, M. C., Rinaldi, M., Decesari, S., et al. (2008). Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates. Geophysical Research Letters, 35, L17814.

    Article  Google Scholar 

  • Fuhrman, J. (1987). Close coupling between release and uptake of dissolved free aminoacids in seawater studied by an isotope dilution approach. Marine Ecology Progress Series, 37, 45–52.

    Article  CAS  Google Scholar 

  • Grannas, A. M., & Shepson, P. B. (2004). Photochemistry and nature of organic matter in Arctic and Antarctic snow. Global biogeochemical Cycles, 18, GB1006.

    Article  Google Scholar 

  • Grossart, H.-P., Levold, F., Allgaier, M., Simon, M., & Brinkhoff, T. (2005). Marine diatom species harbour distinct bacterial communities. Environmental Microbiology, 7(6), 860–873.

    Article  CAS  Google Scholar 

  • Henderson, P. J. F. (1990). Proton-linked sugar transport systems in bacteria. Journal of Bioenergetics and Biomembranes, 22(4), 525–569.

    Article  CAS  Google Scholar 

  • Jensen, L. M. (1983). Phytoplankton release of extracellular organic carbon, molecular weight composition, and bacterial assimilation. Marine Ecology Progress Series, 11, 39–48.

    Article  CAS  Google Scholar 

  • Jones, A. K., & Cannon, R. C. (1986). The release of micro-algal photosynthate and associated bacterial uptake and heterotrophic growth. European Journal of Phycology, 21(4), 341–358.

    Article  Google Scholar 

  • Legrand, M., & DeAngelis, M. (1995). Origins and variations of light carboxylic acids in 13 polar precipitation. Journal of Geophysical Research, 100(D1), 1445–1462.

    Article  CAS  Google Scholar 

  • Legrand, M., & Mayewski, P. (1997). Glaciochemistry of polar ice core: a review. Reviews of Geophysics, 35(3), 219–243.

    Article  CAS  Google Scholar 

  • Lyons, W. B., Welch, K. A., & Doggett, J. K. (2007). Organic carbon in Antarctic snow. Geophysical Research Letters, 34, L02501.

    Article  Google Scholar 

  • Nikpey, A., & Nikpey, M. (2006). Isolation and initial characterization of a pure cultures capable to degradation Methyl tert-Butyl Ether (MTBE). Iranian Journal of Public Health, 35(3), 34–39.

    CAS  Google Scholar 

  • Ogawa, H., Yukio, A., Koike, I., Kaiser, K., & Benner, R. (2001). Production of refractory dissolved organic matter by bacteria. Science, 292, 917–920.

    Article  CAS  Google Scholar 

  • Piperno, J. R., & Oxender, D. L. (1968). Amino acid transport systems in Escherichia coli K12. Journal of Biological Chemistry, 243, 5914–5920.

    CAS  Google Scholar 

  • Sasser, M. (1990). Identification of bacteria through fatty acid analysis. In Z. Klement, K. Rudolph, & D. C. Sands (Eds.), Methods in phytobacteriology (pp. 199–204). Budapest: Adademiai Kiado.

    Google Scholar 

  • Schumann, P., Weiss, N., & Stackebrandt, E. (2001). Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. International Journal of Systematic and Evolutionary Microbiology, 51, 1007–1010.

    Article  CAS  Google Scholar 

  • Staffelbach, T. A., Neftel, A., Stareffer, B., & Jacob, D. (1991). A record of the atmospheric methane sink from formaldehyde in polar ice cores. Nature, 349, 603–605.

    Article  CAS  Google Scholar 

  • Straka, R. P., & Stokes, J. L. (1960). Psychrophilic bacteria from Antarctica. Journal of Bacteriology, 80(5), 622–625.

    CAS  Google Scholar 

  • Sundh, I. (1992). Biochemical composition of dissolved organic carbon derived from phytoplankton and used by heterotrophic bacteria. Applied and Environmental Microbiology, 58(9), 2938–2947.

    CAS  Google Scholar 

  • Twickler, M. S., Spencer, M. J., Lyons, W. B., & Mayewski, P. A. (1986). Measurement of organic carbon in polar snow samples. Nature, 320, 156–158.

    Article  CAS  Google Scholar 

  • Yabuuchi, E., Kosako, Y., Yano, I., Hotta, H., & Nishiuchi, Y. (1995). Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. Nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. Nov., Ralstonia solanacearum (Smith 1896) comb. Nov. and Ralstonia eutropha (Davis 1969) comb. Nov. Microbiology and Immunology, 39(11), 897–904.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Director, NCAOR, for his excellent support. We thank S. Naik and A. Painguinkar for their valuable support during the analysis. We acknowledge the services of MMRF, National Institute of Oceanography, Cochin for whole cell fatty acid analysis. The authors also acknowledge the helpful comments from Dr. Shanta Nair, National Institute of Oceanography, Goa and Dr. C. T. Achuthankutty, NCAOR. Thanks are also due to S. Karunakaran for help with ArcGis. This is NCAOR contribution number 031/2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runa Antony.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antony, R., Mahalinganathan, K., Krishnan, K.P. et al. Microbial preference for different size classes of organic carbon: a study from Antarctic snow. Environ Monit Assess 184, 5929–5943 (2012). https://doi.org/10.1007/s10661-011-2391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2391-1

Keywords

Navigation