Skip to main content
Log in

Modelling of spatial contaminant probabilities of occurrence of chlorinated hydrocarbons in an urban aquifer

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, a 3D urban groundwater model is presented which serves for calculation of multispecies contaminant transport in the subsurface on the regional scale. The total model consists of two submodels, the groundwater flow and reactive transport model, and is validated against field data. The model equations are solved applying finite element method. A sensitivity analysis is carried out to perform parameter identification of flow, transport and reaction processes. Coming from the latter, stochastic variation of flow, transport, and reaction input parameters and Monte Carlo simulation are used in calculating probabilities of pollutant occurrence in the domain. These probabilities could be part of determining future spots of contamination and their measure of damages. Application and validation is exemplarily shown for a contaminated site in Braunschweig (Germany), where a vast plume of chlorinated ethenes pollutes the groundwater. With respect to field application, the methods used for modelling reveal feasible and helpful tools to assess natural attenuation (MNA) and the risk that might be reduced by remediation actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Altmayer, M., Bach, T., Dieter, H. H., Häfner, K., Leuchs, W., Moll, B., et al. (2004). Ableitung von Geringfügigkeitsschwellenwerten für das Grundwasser. Berlin: Kulturbuch-Verlag.

    Google Scholar 

  • Alvarez-Cohen, L., & Speitel, G. E. (2001). Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation, 12(2), 105–126.

    Article  CAS  Google Scholar 

  • Azizian, M. F., Istok, J. D., & Semprini, L. (2007). Evaluation of the in-situ aerobic cometabolism of chlorinated ethenes by toluene-utilizing microorganisms using push-pull tests. Journal of Contaminant Hydrology, 90(1–2), 105–124.

    Article  CAS  Google Scholar 

  • Bauer, S., Beyer, C., & Kolditz, O. (2006). Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers. Water Resources Research. doi:10.1029/2004WR003878.

  • Benekos, I. D., Shoemaker, C. A., & Stedinger, J. R. (2007). Probabilistic risk and uncertainty analysis for bioremediation of four chlorinated ethenes in groundwater. Stochastic Environmental Research and Risk Assessment, 21(4), 375–390.

    Article  Google Scholar 

  • Bradley, P. M. (2000). Microbial degradation of chloroethenes in groundwater systems. Hydrogeology Journal, 8(1), 104–111.

    CAS  Google Scholar 

  • Clement, T. P., Sun, Y., Hooker, B. S., & Petersen, J. N. (1998). Modeling multispecies reactive transport in ground water. Ground Water Monitoring & Remediation, 18(2), 79–92.

    Article  CAS  Google Scholar 

  • Clement, T. P., Johnson, C. D., Sun, Y., Klecka, G. M., & Bartlett, C. (2000). Natural attenuation of chlorinated ethene compounds: model development and field-scale application at the Dover site. Journal of Contaminant Hydrology, 42(2–4), 113–140.

    Article  CAS  Google Scholar 

  • Clement, T. P., Truex, M. J., & Lee, P. (2002). A case study for demonstrating the application of U.S. EPA’s monitored natural attenuation screening protocol at a hazardous waste site. Journal of Contaminant Hydrology, 59(1–2), 133–162.

    Article  CAS  Google Scholar 

  • Diersch, H. J. (2009). Feflow reference manual. Berlin: DHI-WASY.

    Google Scholar 

  • European Environment Agency. (2005). The European environment—state and outlook 2005. Luxembourg: European Environment Agency, Office for Official Publications of the European Communities.

  • Gorelick, S. M. (1990). Large scale nonlinear deterministic and stochastic optimization: formulations involving simulation of subsurface contamination. Mathematical Programming. doi:10.1007/BF01582250.

  • Kaufman, M. M., Rogers, D. T., & Murray, K. S. (2005). An empirical model for estimating remediation costs at contaminated sites. Water, Air, and Soil Pollution, 167(1), 365–386.

    Article  CAS  Google Scholar 

  • Konikow, L. F., & Mercer, J. W. (1988). Groundwater flow and transport modeling. Journal of Hydrology, 100(1–3), 379–409.

    Article  CAS  Google Scholar 

  • Lee, I.-S., Bae, J.-H., Yang, Y., & McCarty, P. L. (2004). Simulated and experimental evaluation of factors affecting the rate and extent of reductive dehalogenation of chloroethenes with glucose. Journal of Contaminant Hydrology, 74(1–4), 313–331.

    Article  CAS  Google Scholar 

  • Lemke, L., & Bahrou, A. (2009). Partitioned multiobjective risk modeling of carcinogenic compounds in groundwater. Stochastic Environmental Research and Risk Assessment, 23(1), 27–39.

    Article  Google Scholar 

  • Ling, M., & Rifai, H. S. (2007). Modeling natural attenuation with source control at a chlorinated solvents dry cleaner site. Ground Water Monitoring & Remediation, 27(1), 108–121.

    Article  CAS  Google Scholar 

  • Ma, H.-W., & Chang, C.-C. (2008). Assessment of the value of reducing uncertainty by sampling in a groundwater remediation system. Science of the Total Environment, 402(1), 9–17.

    Article  CAS  Google Scholar 

  • Massabo, M., Catania, F., Piazza, D. D., & Paladino, O. (2008). Groundwater risk Assessment of PCE at a contaminated site. Fresenius Environmental Bulletin, 17(9), 1452–1459.

    CAS  Google Scholar 

  • Meyer, P. D., Ranjitham, R., Valocchi, A. J., & Eheart, J. W. (1989). Groundwater monitoring network design using coupled Monte Carlo simulation and optimization. In: Proc. 1989 National Conference on Hydraulics Engineering, American Society of Civil Engineers, New Orleans, LA, ASCE, New York, pp. 404–409.

  • Mohamed, M. M. A., Hatfield, K., & Hassan, A. E. (2006). Monte Carlo evaluation of microbial-mediated contaminant reactions in heterogeneous aquifers. Advances in Water Resources, 29(8), 1123–1139.

    Article  CAS  Google Scholar 

  • Mulligan, C. N., & Yong, R. N. (2004). Natural attenuation of contaminated soils. Environment International, 30(4), 587–601.

    Article  CAS  Google Scholar 

  • Noell, A. L. (2009). Estimation of sequential degradation rate coefficients for chlorinated ethenes. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 13(1), 35–44.

    Article  CAS  Google Scholar 

  • Rein, A., Bauer, S., Dietrich, P., & Beyer, C. (2009). Influence of temporally variable groundwater flow conditions on point measurements and contaminant mass flux estimations. Journal of Contaminant Hydrology, 108(3–4), 118–133.

    Article  CAS  Google Scholar 

  • Rivett, M. O., Feenstra, S., & Cherry, J. A. (2001). A controlled field experiment on groundwater contamination by a multicomponent DNAPL: creation of the emplaced-source and overview of dissolved plume development. Journal of Contaminant Hydrology, 49(1–2), 111–149.

    Article  CAS  Google Scholar 

  • Schaerlaekens, J., Mallants, D., Simûnek, J., van Genuchten, M. T., & Feyen, J. (1999). Numerical simulation of transport and sequential biodegradation of chlorinated aliphatic hydrocarbons using CHAIN_2D. Hydrological Processes, 13(17), 2847–2859.

    Article  Google Scholar 

  • Shen, H., & Sewell, G. W. (2005). Reductive biotransformation of tetrachloroethene to ethene during anaerobic degradation of toluene: experimental evidence and kinetics. Environmental Science & Technology. doi:10.1021/es050390v.

  • Stüben, K. (2001). A review of algebraic multigrid. Journal of Computational and Applied Mathematics, 128(1–2), 281–309.

    Article  Google Scholar 

  • Stupp, H. D., Bakenhus, A., Stauffer, R., & Lorenz, D. (2005). Sanierungsoptimierung von CKW-Grundwasserschäden—Möglichkeiten zur Reduzierung der Sanierungskosten. Altlasten Spektrum, 6, 313–322.

    Google Scholar 

  • Trinkwasserverordnung vom 21. Mai 2001 (BGBl. I S. 959), die zuletzt durch Artikel 1 der Verordnung vom 3. Mai 2011 (BGBl. I S. 748) geändert worden ist.

  • Wang, J. (2008). Sensitivity and uncertainty analyses of contaminant fate and transport in a field-scale subsurface system. Ph.D. Thesis. Atlanta: Georgia Institute of Technology.

  • Wiedemeier, T. H., Swanson, M. A., Moutoux, D. E., Gordon, E. K., Wilson, J. T., Wilson, B. H., et al. (1998). Technical protocol for evaluating natural attenuation of chlorinated solvents in groundwater. National Risk Management Research Laboratory, EPA, Cincinnati, Ohio. EPA/600/R-98/128

Download references

Acknowledgements

The authors would like to thank the German Research Foundation (DFG) for grants of the International Graduate School 802, in which this study was conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tillman Greis.

Appendix

Appendix

The following differential equation systems based on mass conservation principle are applied in this study:

For fluid phase f and species k:

$$ \frac{\partial }{{\partial t}}\left( {{s_{\text{f}}}{\varepsilon_{\text{f}}}{\Re_{\text{k}}}C_{\text{k}}^{\text{f}}} \right) - \nabla \cdot \left( {D_{\text{k}}^{\text{f}} \cdot \nabla C_{\text{k}}^{\text{f}}} \right) + \nabla \cdot \left( {{q^{\text{f}}}C_{\text{k}}^{\text{f}}} \right) - {s_{\text{f}}}{\varepsilon_{\text{f}}}Q_{\text{k}}^{\text{f}} = {R_{\text{k}}} $$

For solid phase s and species k:

$$ \frac{\partial }{{\partial t}}\left( {{\varepsilon_s}C_k^s} \right) - {\varepsilon_s}Q_k^s = {R_k} $$

with retardation factor: \( {\Re_k} = 1 + \frac{{1 - \varepsilon }}{\varepsilon }{K_{{D,k}}} \) and hydrodynamic dispersion tensor: \( D_{\text{k}}^{\text{f}} = \left( {{s_{\text{f}}}\varepsilon D_{{{\text{d,k}}}}^{\text{f}} + {\beta_{\text{T}}}{{\left\| q \right\|}^{\text{f}}}} \right)I + \left( {{\beta_{\text{L}}} - {\beta_{\text{T}}}} \right)\frac{{{q^{\text{f}}} \otimes {q^{\text{f}}}}}{{{{\left\| q \right\|}^{\text{f}}}}} \) and reaction term: \( {R_k} = \sum\limits_{{m = 1}}^N {{\nu_{{k,r}}}{\kappa_m}{{\left( {C_m^{\alpha }} \right)}^{{{n_m}}}}} \)

\( C_k^{\alpha } \) :

= concentration of species k of α-phase

\( D_k^{\alpha } \) :

= tensor of hydrodynamic dispersion of species k of α-phase

\( D_d^{\alpha } \) :

= coefficient of molecular diffusion of species k of α-phase

α :

= phase indicator (f = fluid, s = solid)

k :

= species indicator

\( {\varepsilon_{\alpha }} \) :

= volume fraction of α-phase

\( Q_k^{\alpha } \) :

= zero-order nonreactive production term of α-phase

R k :

= bulk rate of chemical reaction of species k

\( {q^{\alpha }} \) :

= Darcy flux of α-phase

I :

= unit tensor

N :

= total number of chemical species

β L, β T :

= longitudinal and transverse dispersivity of porous medium

s f :

= saturation of the fluid phase

k :

= retardation factor of species k

κ m :

= bulk rate constants

ν kr :

= stoichiometric number of species k and reaction r

K D,k :

= linear sorption coefficient (Henry coefficient) of species k

Flow regime is covered by the Darcy equation in the following form:

$$ q_i^f = - {K_{{ij}}}\frac{{\mu_0^f}}{{{\mu^f}}}\left( {\frac{{\partial h}}{{\partial {x_j}}} + \frac{{{\rho^f} - \rho_o^f}}{{{\rho^f}}}{e_j}} \right) $$
\( q_i^f \) :

= Darcy velocity

K ij :

= hydraulic conductivity

\( \frac{{\partial h}}{{\partial {x_j}}} \) :

= gradient

ρ f :

= density of the fluid phase

\( \rho_0^f \) :

= reference fluid density

e j :

= gravitational unit vector

\( \mu_0^f \) :

= reference viscosity

μ f :

= hydrodynamic viscosity

i, j :

= unit vectors in direction of main axis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greis, T., Helmholz, K., Schöniger, H.M. et al. Modelling of spatial contaminant probabilities of occurrence of chlorinated hydrocarbons in an urban aquifer. Environ Monit Assess 184, 3577–3591 (2012). https://doi.org/10.1007/s10661-011-2209-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-2209-1

Keywords

Navigation