Skip to main content

Advertisement

Log in

Effects of lead and zinc mining contamination on bacterial community diversity and enzyme activities of vicinal cropland

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In the process of mining activity, many kinds of heavy metals enter into soils with dust, causing serious contamination to the environment. In this study, six soils were sampled from cropland at different distances from a lead/zinc mine in Heilongjiang Province, China. The total contents of lead and zinc in the vicinal cropland exceeded the third level of environmental quality standard for soil in China, which indicated that soils in this area were moderately contaminated. Bacterial community diversity and population were greatly decreased when the concentrations of lead and zinc were beyond 1,500 and 995 mg kg − 1, respectively, as analyzed by plate counting and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The bands of DGGE patterns varied with the degree of contamination. The activities of soil urease, phosphatase, and dehydrogenase were negatively correlated with the concentrations of lead and zinc. The highest inhibitory effect of heavy metals on soil enzyme activities was observed in urease. It was noted that PCR-DGGE patterns combined with soil enzyme activity analysis can be indices for the soil quality assessment by heavy metal contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amador, J. A., Glucksman, A. M., Lyons, J. B., & Gorres, J. H. (1997). Spatial distribution of soil phosphatase activity within a riparian forest. Soil Science, 162, 808–825.

    Article  CAS  Google Scholar 

  • Badiane, N. N. Y., Chotte, J. L., Pate, E., et al. (2001). Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions. Applied Soil Ecology, 18, 229–238.

    Article  Google Scholar 

  • Belyaeva, O. N., Haynes, R. J., & Birukova, O. A. (2005). Barley yield and soil microbial and enzyme activities as affected by contamination of two soils with lead, zinc or copper. Biology and Fertility of Soil, 41, 85–94.

    Article  CAS  Google Scholar 

  • Bi, X. Y., Feng, X. B., Yang, Y. G., et al. (2006). Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, western Guizhou, China. Environment International, 32, 883–890.

    Article  CAS  Google Scholar 

  • Bremner, J. M., & Mulvaney, R. L. (1978). Urease activity in soils. In R. G. Burns (Ed.), Soil enzymes (pp. 149–196). New York: Academic.

    Google Scholar 

  • Brooks, P. C., McGrath, S. P., Klein, D. A., & Elliot, E. T. (1984). Effects of heavy metals on microbial activity and biomass in field soils treated with sewage sludge (pp. 574–585). Environmental Contamination, CEP, Edinburgh.

  • Cai, X. D., Qiu, R. L., Chen, G. Z., Zeng, X. W., & Fang, X. H. (2007). Response of microbial communities to phytoremediation of nickel contaminated soils. Frontiers of Agriculture in China, 1(3), 289–295.

    Article  Google Scholar 

  • Desai, C., Parikh, R. Y., Vaishnav, T., Shouche, Y. S., & Madamwar, D. (2009). Tracking the influence of long-term chromium pollution on soil bacterial community structures by comparative analyses of 16S rRNA gene phylotypes. Research in Microbiology, 160, 1–9.

    Article  CAS  Google Scholar 

  • Dick, R. P., Breakwell, D. P., & Turco, R. F. (1996). Soil enzyme activities and biodiversity measurements and integrative microbial indicators. Methods of Assessing Soil Quality, 49, 247–271.

    CAS  Google Scholar 

  • Doelman, P., Jansen, E., Michels, M., & Van Til, M. (1994). Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameter. Biology and Fertility of Soils, 17, 177–184.

    Article  CAS  Google Scholar 

  • Ellis, J. R., Morgan, P., Weightman, J. A., & Fry, C. J. (2003). Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil. Applied and Environmental Microbiology, 69, 3223–3230.

    Article  CAS  Google Scholar 

  • Feris, K. P., Ramsey, P. W., Rillig, M., Moore, J. N., Gannon, J. E., & Holben, W. E. (2004). Determining rates of change and evaluating group-level resiliency differences in hyporheic microbial communities in response to fluvial heavy-metal deposition. Applied and Environmental Microbiology, 70, 4756–4765.

    Article  CAS  Google Scholar 

  • Garcia, C., Hernandez, T., & Costa, F. (1997). Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Communications in Soil Science and Plant Analysis, 28, 123–134.

    Article  CAS  Google Scholar 

  • Giller, K., Witter, E., & McGrath, S. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology and Biochemistry, 30, 1398–1414.

    Article  Google Scholar 

  • Gülser, F., & Erdoǧan, E. (2008). The effects of heavy metal pollution on enzyme activities and basal soil respiration of roadside soils. Environmental Monitoring and Assessment, 145, 127–133.

    Article  Google Scholar 

  • Heuer, H., Krsek, M., Baker, P., Smalla, K. W., & Elizabeth, M. H. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology, 63(8), 3233–3241.

    CAS  Google Scholar 

  • Hinojosa, M. B., Carreira, J. A., García-Ruíz, R., & Dick, R. P. (2004). Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal- contaminated and reclaimed soils. Soil Biology and Biochemistry, 36, 1559–1568.

    Article  CAS  Google Scholar 

  • Hu, Q., Qi, H. Y., Zeng, J. H., & Zhang, H. X. (2007). Bacterial diversity in soils around a lead and zinc mine. Journal of Environmental Sciences, 19, 74–79.

    Article  CAS  Google Scholar 

  • Joynt, J., Bischoff, M., Turco, R., Konopka, A., & Nakatsu, CH. (2006). Microbial community analysis of soils contaminated with lead, chromium and petroleum hydrocarbons. Microbiology Ecology, 51(2), 209–219.

    Article  CAS  Google Scholar 

  • Kandeler, E., Kampicher, C., & Horak, O. (1996). Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils, 23, 299–306.

    Article  CAS  Google Scholar 

  • Kandeler, E., Tscherko, D., Bruce, K. D., Stemmer, M., Hobbs, P. J., Bardgett, R. D., et al. (2000). Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil. Biology and Fertility of Soils, 32, 390–400.

    Article  CAS  Google Scholar 

  • Kannan, K., & Oblisami, G. (1990). Influence of paper mill effluent irrigation on soil enzyme activities. Soil Biology and Biochemistry, 22, 923–926.

    Article  Google Scholar 

  • Kelly, J. J., Haggblom, M., & Tate, R. L. (2003). Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles. Biology and Fertility of Soils, 38, 65–71.

    Article  CAS  Google Scholar 

  • Khan, S., Cao, Q., Hesham, A. E. -L., Xia, Y., & He, J. Z. (2007). Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb. Journal of Environment Sciences, 19, 834–840.

    Article  CAS  Google Scholar 

  • Kim, K.-R., Owens, G., & Naidu, R. (2009). Heavy metal distribution, bioaccessibility, and phytoavailability in long-term contaminated soils from Lake Macquarie, Australia. Australian Journal of Soil Research, 47(2), 166–176.

    Article  CAS  Google Scholar 

  • Kizilkaya, R. (2004). Cu and Zn accumulation in earthworm Lumbricus terrestris L. in sewage sludge amended soil and fractions of Cu and Zn in casts and surrounding soil. Ecological Engineering, 22, 141–151.

    Article  Google Scholar 

  • Landmeyer, J. E., Bradley, P. M., & Chapelle, F. H. (1993). Influence of Pb on microbial activity in Pb-contaminated soils. Soil Biology and Biochemistry, 25, 1465–1466.

    Article  CAS  Google Scholar 

  • Leita, L., De, N. M., Mühlbachová, G., Mondini, C., Marchiol, L., & Zerbi, G. (1995). Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation. Biology and Fertility of Soils, 19, 103–108.

    Article  CAS  Google Scholar 

  • Li, Z. J., Xu, J. M., Tang, C. X., Wu, J. J., Muhammad, A., & Wang, H. Z. (2006). Application of 16SrDNA-PCR amplification and DGGE fingerprinting for detection of shift in microbial community diversity in Cu-, Zu-, and Cd-contaminated paddy soils. Chemosphere, 62, 1374–1380.

    Article  CAS  Google Scholar 

  • Liao, G. L., Liao, D. X., & Li, Q. M. (2008). Heavy metals contamination characteristics in soil of different mining activity zones. Transactions of Nonferrous Metals Society of China, 18, 207–211.

    Article  CAS  Google Scholar 

  • Liu, H. Y., Probst, A., & Liao, B. H. (2005). Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Science of the Total Environment, 339, 153–166.

    Article  CAS  Google Scholar 

  • Margesin, R., Zimmerbauer, A., & Schinner, F. (2000). Monitoring of bioremediation by soil biological activities. Chemosphere, 40, 339–346.

    Article  CAS  Google Scholar 

  • McLaughlin, M. J., Tiller, K. G., Naidu, R., & Stevens, D. P. (1996). Review: The behaviour and environmental impact of contaminants in fertilisers. Australian Journal of Soil Research, 34, 1–54.

    Article  CAS  Google Scholar 

  • Mette, H. N., & Neils, B. R. (2002). Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. Journal of Microbiology Methods, 50, 189–203.

    Article  Google Scholar 

  • Mijangos, I., P’erez, R., Albizu, I., & Garbisu, C. (2006). Effects of fertilization and tillage on soil biological parameters. Enzyme and Microbial Technology, 40, 100–106.

    Article  CAS  Google Scholar 

  • Moffett, B. F., Nicholson, F. A., Uwakwe, N. C., Chambers, B. J., Harris, J. A., & Hill, T. C. J. (2003). Zinc contamination decreases the bacterial diversity of agricultural soil. FEMS Microbiology Ecology, 43, 13–19.

    Article  CAS  Google Scholar 

  • Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., & Renella, G. (2003). Microbial diversity and soil functions. European Journal of Soil Science, 54, 655–670.

    Article  Google Scholar 

  • Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In A. L. Page, et al. (Eds.), Methods of soil analysis (part 2, pp. 539–579) Agron. Monogr.

  • Ovreas, L., Forney, L., Daae, F. L., & Torsvik, V. (1997). Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Applied and Environmental Microbiology, 63, 3367–3373.

    CAS  Google Scholar 

  • Quilchano, C., & Maranon, T. (2002). Dehydrogenase activity in Mediterranean forest soils. Biology and Fertility of Soils, 35, 102–107.

    Article  CAS  Google Scholar 

  • Reddy, G. B., Faza, A., & Bennett, R. (1987). Activity of enzymes in rhizosphere and nonrhizosphere soil amend with sludge. Soil Biology and Biochemistry, 19, 203–205.

    Article  Google Scholar 

  • Renella, G., Mench, M., Landi, L., & Nannipieri, P. (2005). Microbial diversity and hydrolase synthesis in long-term Cd-contaminated soils. Soil Biology and Biochemistry, 37, 133–139.

    Article  CAS  Google Scholar 

  • Rodriguez, B. B., Bolbot, J. A., & Tothill, I. E. (2004). Development of urease and glutamic dehydrogenase amperometric assay for heavy metals screening in polluted samples. Biosens Bioelectron, 19(10), 1157–1167.

    Article  CAS  Google Scholar 

  • Sandaa, R., Torsvik, V., & Enger, O. (2001). Influence of long term heavy-metal contamination on microbial communities in soil. Soil Biology and Biochemistry, 33, 287–295.

    Article  CAS  Google Scholar 

  • Schinner, F., & Brunner, I. (1984). Effect of lead and cadmium on the microbial activity of a soil. Bodenkultur, 35, 1–12.

    Google Scholar 

  • SEPAC (1997a). GB/T 17138–1997, Soil quality: Determination of copper, zinc. Beijing: CCAP (in Chinese).

    Google Scholar 

  • SEPAC (1997b). GB/T 17141–1997, Soil quality: Determination of lead, cadmium. Beijing: CCAP (in Chinese).

    Google Scholar 

  • Stach, J. E. M., Bathe, S., Clapp, P. J., & Burns, R. G. (2006). PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods. FEMS Microbiology Ecology, 36, 139–151.

    Article  Google Scholar 

  • Tabatabai, M. A. (1982). Methods of soil analysis. In A. L. Miller, & D. R. Keeney (Eds.), Part 2: Chemical and microbiological properties (2nd Edn.). Agronomy, No. 9, ASA, SSSA, Madison. WI, USA.

  • Taylor, J. P., Wilson, B., Mills, M. S., & Burns, R. G. (2002). Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biology and Biochemistry, 34, 387–401.

    Article  CAS  Google Scholar 

  • Thomas, G. W. (1996). Soil pH and soil acidity. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnson, & M. E. Sumner (Eds.), Methods of soil analysis. Part 3: Chemical methods. soil sci. soc (pp. 475–490). Madison, WI: SSSA. Am. Book Ser. 5.

  • Trasar-Cepeda, C., Leirós, M. C., Seoane, S., & Gil-Sotres, F. (2000). Limitations of soil enzymes as indicators of soil pollution. Soil Biology and Biochemistry, 32, 1867–1875.

    Article  CAS  Google Scholar 

  • Tomoyoshi, M., Masami, K. K., & Takejiro, T. (2005). Effects of Pb, Cu, Sb, In and Ag contamination on the proliferation of soil bacterial colonies, Soil dehydrogenase activity, and phospholipid fatty acid profiles of soil microbial communities. Water, Air, & Soil Pollution, 164, 103–118.

    Article  Google Scholar 

  • Wang, X. L., Xu, J. M., Yao, H. Y., & Xie, Z. M. (2003). Effects of Cu, Zn, Cd and Pb compound contamination on soil microbial community. Acta Scientiae Circumstantiae (in Chinese), 23(1), 22–27.

    Google Scholar 

  • Wang, Y. P., Shi, J. Y., Wang, H., et al. (2007). The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity and community composition near a copper smelter. Ecotoxicology and Environmental Safety, 67, 75–81.

    Article  CAS  Google Scholar 

  • Wyszkowska, J., Kucharski, M., Kucharski, J., & Borowik, A. (2009). Activity of dehydrogenases, catalase and urease in copper polluted soil. Journal of Elementology, 14(3), 605–617.

    Google Scholar 

  • Yang, Z. X., Liu, S. Q., Zheng, D. W., & Feng, S. D. (2006). Effects of cadmium, zinc and lead on soil enzyme activities. Journal of Environment Science (China), 18(6), 1135–1141.

    Article  Google Scholar 

  • Yeates, G. W., Orchard, V. A., Speir, T. W., Hunt, J. L., & Hermans, M. C. C. (1994). Impact of pasture contamination by copper, chromium, arsenic timber preservative on soil biological activity. Biology and Fertility of Soils, 18, 200–208.

    Article  CAS  Google Scholar 

  • Zhou, J. Z., Bruns, A. M., & Tiedje, J. M. (1996). DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 62, 316–322.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juanjuan Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, J., Ren, G., Chen, B. et al. Effects of lead and zinc mining contamination on bacterial community diversity and enzyme activities of vicinal cropland. Environ Monit Assess 182, 597–606 (2011). https://doi.org/10.1007/s10661-011-1900-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-011-1900-6

Keywords

Navigation