Skip to main content
Log in

A complex investigation of the extent of pollution in sediments of the Sava River. Part 1: Selected elements

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Sava River is the biggest tributary to the Danube River. As a part of the 6th FW EU project, Sava River Basin: Sustainable Use, Management and Protection of Resources (SARIB), ecological status of sediments was investigated. In order to assess the geographical distribution in sediment contamination of the Sava River, inorganic and persistent organic pollutants were analyzed in sediments at 20 selected sampling sites along the Sava River from its spring to its outfall into the Danube River. For comparability of data to other river basins the sediment fraction below 63 μm was studied. Due to complexity of the work performed, the results are published separately (“Part I: Selected elements” and “Part II: Persistent organic pollutants”). In the present study, the extent of pollution was estimated by determination of the total element concentrations and by the identification of the most hazardous highly mobile element fractions and anthropogenic inputs of elements to sediments. To assess the mobile metal fraction extraction in 0.11 mol L − 1, acetic acid was performed (first step of the Community Bureau of Reference extraction procedure), while anthropogenic inputs of elements were estimated on the basis of normalization to aluminum (Al) concentration. According to the Water Framework Directive, the following elements were investigated in sediments: cadmium (Cd), lead (Pb), nickel (Ni), and mercury (Hg). Furthermore, copper (Cu), zinc (Zn), chromium (Cr), arsenic (As), and phosphorous (P) were determined. The analyses of sediments demonstrated slightly elevated values for Hg, Cr, and Ni in industrially exposed sites (concentrations up to 0.6, 380, and 210 mg kg − 1, respectively). However, the latter two elements exist in sparingly soluble forms and therefore do not represent an environmental burden. P concentrations were found in elevated concentrations at agricultural areas and big cities (up to 1,000 mg kg − 1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borovec, Z. (2000). Elements in size-fractionated bottom sediments of the Elbe River in its Czech part. Aquatic Sciences, 62, 232–251. doi:10.1007/PL00001334.

    Article  CAS  Google Scholar 

  • Canadian Environmental Quality Guidelines. (1999). Canadian sediment quality guidelines for the protection of aquatic life. Environment Canada Ottawa, Ontario, Canadian Council of Ministers of the Environment.

  • Casado-Martínez, M. C., Buceta, J. L., Belzunce, M. J., & DelValls, T. A. (2006). Using sediment quality guidelines for dredged material management in commercial ports from Spain. Environment International, 32, 388–396. doi:10.1016/j.envint.2005.09.003.

    Article  Google Scholar 

  • Covelli, S., Faganeli, J., Horvat, M., & Brambati, A. (2001). Mercury contamination of coastal sediments as the result of long-term cinnabar mining activity (Gulf of Trieste, northern Adriatic sea). Applied Geochemistry, 16, 541–558. doi:10.1016/S0883-2927(00)00042-1.

    Article  CAS  Google Scholar 

  • de Miguel, E., Charlesworth, S., Ordóñez, A., & Seijas, E. (2005). Geochemical fingerprints and controls in the sediments of an urban river: River Manzanares, Madrid (Spain). Science of the Total Environment, 340, 137–148. doi:10.1016/j.scitotenv.2004.07.031.

    Article  CAS  Google Scholar 

  • Din, Z. B. (1992). Use of aluminium to normalize heavy-metal data for estuarine and costal sediments of Straits of Melaka. Marine Pollution Bulletin, 24, 484–491. doi:10.1016/0025-326X(92)90472-I.

    Article  CAS  Google Scholar 

  • Giusti, I., & Taylor, A. (2007). Natural and antrophogenic contamination of the Fratta–Gorzone river (Veneto, Italy). Environmental Monitoring and Assessment, 134, 211–231. doi:10.1007/s10661-007-9611-8.

    Article  CAS  Google Scholar 

  • Grosbois, C., Meybeck, M., Horowitz, A., & Ficht, A. (2006). The spatial and temporal trends of Cd, Cu, Hg, Pb and Zn in Seine River floodplain deposits (1994–2000). Science of the Total Environment, 356, 22–37. doi:10.1016/j.scitotenv.2005.01.049.

    Article  CAS  Google Scholar 

  • Guevara-Riba, A., Sahuquillo, A., Rubio, R., & Rauret, G. (2004). Assessment of metal mobility in dredged harbor sediments from Barcelona, Spain. Science of the Total Environment, 321, 241–255. doi:10.1016/j.scitotenv.2003.08.021 .

    Article  CAS  Google Scholar 

  • Heath, E., Ščančar, J., Zuliani, T., & Milačič, R. (2009). A complex investigation of the extent of pollution in sediments of the Sava River: Part 2: Persistent organic pollutants. Environmental Monitoring and Assessment. doi:10.1007/s10661-009-0833-9.

    Google Scholar 

  • Hines, M. E., Faganeli, J., Adatto, I., & Horvat, M. (2006). Microbial mercury transformations in marine, estuarine and freshwater sediment downstream of the Idrija Mercury Mine, Slovenija. Applied Geochemistry, 21, 1924–1939. doi:10.1016/j.apgeochem.2006.08.008.

    Article  CAS  Google Scholar 

  • Horvat, M., Jereb, V., Fajon, V., Logar, M., Kotnik, J., Faganeli, J., et al. (2002). Mercury distribution in water, sediment and soil in the Idrijca and Soča river systems. Geochemistry Exploration Environment Analysis, 2, 287–296. doi:10.1144/1467-787302-033.

    Article  CAS  Google Scholar 

  • House, W. A., & Denison, F. H. (2002). Total phosphorus content of river sediments in relationship to calcium, iron and organic matter concentrations. Science of the Total Environment, 282–283, 341–351. doi:10.1016/S0048-9697(01)00923-8.

    Article  Google Scholar 

  • ICPDR (International Commission for the Protection of the Danube River) (2002) Joint danube survey. Technical Report of the International Commission for the protection of the Danube River. Vienna, Austria.

  • Karadede-Akin, H., & Ünlü, E. (2007). Heavy metal concentrations in water, sediment, fish and some benthic organisms from Tigris River, Turkey. Environmental Monitoring and Assessment, 131, 323–337. doi:10.1007/s10661-006-9478-0.

    Article  CAS  Google Scholar 

  • Kotnik, J., Horvat, M., Milačič, R., Ščančar, J., Fajon, V., & Križanovski, A. (2003). Heavy metals in the sediments of the Sava River, Slovenia. Geologija, 46, 263–272.

    Google Scholar 

  • Loring, D. H., & Rantala, R. R. T. (1992). Manual for the geochemical analysis of marine sediments and suspended particulate matter. Earth-Science Reviews, 32, 325. doi:10.1016/0012-8252(92)90001-A

    Article  Google Scholar 

  • McCready, S., Birch, G. F., Long, E. R., Spyrakis, G., & Greely, C. R. (2006a). Predictive abilities of numerical quality guidelines in Sydney Harbour, Australia, and vicinity. Environment International, 32, 638–649. doi:10.1016/j.envint.2006.02.004.

    Article  CAS  Google Scholar 

  • McCready, S., Birch, G. F., Long, E. R., Spyrakis, G., & Greely, C. R. (2006b). An evaluation of Australian sediemnt quality guidelines. Archives of Environmental Contamination and Toxicology, 50, 306–315. doi:10.1007/s00244-004-0233-7.

    Article  CAS  Google Scholar 

  • McGrath, D. (1996). Application of single and sequential extraction procedures to polluted and unpolluted soils. Science of the Total Environment, 178, 37–44. doi:10.1016/0048-9697(95)04795-6.

    Article  CAS  Google Scholar 

  • Meybeck, M., Lestel, L., Bonté, P., Moilleron, R., Colin, J.-L., Rousselot, O., et al. (2007). Historical perspective of heavy metals contamination (Cd, Cr, Cu, Hg, Pb, Zn) in the Seine River basin (France) following a DPISIR approach (1950–2005). Science of the Total Environment, 375, 204–231. doi:10.1016/j.scitotenv.2006.12.017.

    Article  CAS  Google Scholar 

  • Nguyen, L. M. (1999). Phosphate incorporation and transformation in surface sediments of a sewage-impacted wetland as influenced by sediment sites, sediment pH and added phosphate concentration. Ecological Engineering, 14, 139–155. doi:10.1016/S0925-8574(99)00025-7.

    Article  Google Scholar 

  • Quevauviller, Ph., Lachica, M., Barahona, E., Rauret, G., Ure, A., Gomez, A., et al. (1996). Interlaboratory comparison of EDTA and DTPA procedures prior to certification of extractable trace elements in calcareous soil. Science of the Total Environment, 178, 127–132. doi:10.1016/0048-9697(95)04804-9.

    Article  CAS  Google Scholar 

  • Quevauviller, Ph., Rauret, G., López-Sánchez, J. F., Rubio, R., Ure, A., & Muntau, H. (1997). Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure. Science of the Total Environment, 205, 223–234. doi:10.1016/S0048-9697(97)00205-2.

    Article  CAS  Google Scholar 

  • Rios-Arana, J. V., Walsh, E. J., & Gardea-Torresdey, J. L. (2003). Assessment of arsenic and heavy metal concentrations in water and sediments of the Rio Grande at El Paso-Juarez metroplex region. Environment International, 29, 957–971. doi:10.1016/S0160-4120(03)00080-1.

    Article  CAS  Google Scholar 

  • Santos Bermejo, J. C., Beltrán, R., & Gómez Ariza, J. L. (2003). Spatial variations of heavy metals contamination in sediments from Odiel river (Southwest Spain). Environment International, 29, 69–77. doi:10.1016/S0160-4120(02)00147-2.

    Article  CAS  Google Scholar 

  • Sin, S. N., Chua, H., Lo, W., & Ng, L. M. (2001). Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong. Environment International, 26, 297–301. doi:10.1016/S0160-4120(01)00003-4.

    Article  CAS  Google Scholar 

  • Sterckeman, T., Gomez, A., & Ciesielski, H. (1996). Soil and waste analysis for environmental risk assessment in France. Science of the Total Environment, 178, 63–69. doi:10.1016/0048-9697(95)04798-0.

    Article  CAS  Google Scholar 

  • Svete, P., Milačič, R., & Pihlar, B. (2000). Partitioning of Zn, Pb, and Cd in river sediments from lead and zinc mining area using the BCR three-step extraction procedure. Journal of Environmental Monitoring, 3, 586–590. doi:10.1039/b106311c.

    Article  CAS  Google Scholar 

  • Ščančar, J., Milačič, R., & Horvat, M. (2000). Comparison of various digestion and extraction procedures in analysis of heavy metals in sediments. Water, Air, and Soil Pollution, 118, 87–99. doi:10.1023/A:1005187602820.

    Article  Google Scholar 

  • Ščančar, J., Zuliani, T., Turk, T., & Milačič, R. (2007). Organotin compounds and selected metals in the marine environment of Northeren Adriatic Sea. Environmental Monitoring and Assessment, 127, 271–282. doi:10.1007/s10661-006-9278-6.

    Article  CAS  Google Scholar 

  • Škrbić, B., & Čupić, S. (2004). Trace metal distribution in surface soils of Novi Sad and bank sediment of the Danube River. Journal of Environmental Science and Health. Part A, Environmental Science and Engineering & Toxic and Hazardous Substance Control, 39, 1547–1558.

    Google Scholar 

  • Šömen Joksič, A., Katz, S.a., Horvat, M., & Milačič, R. (2005). Comparison of single and sequential extraction procedures for assessing metal leaching from dredged costal sediments. Water, Air, and Soil Pollution, 162, 265–283. doi:10.1007/s11270-005-7031-3.

    Article  CAS  Google Scholar 

  • Tack, F. M., & Verloo, M. G. (1996). Impact of single reagent extraction using NH4OAc-EDTA on the solid phase distribution of metals in a contaminated dredged sediment. Science of the Total Environment, 178, 29–36. doi:10.1016/0048-9697(95)04794-8.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulated metals. Analytical Chemistry, 51, 844–851. doi:10.1021/ac50043a017.

    Article  CAS  Google Scholar 

  • Tomiyasu, T., Matsuyama, A., Eguchi, T., Fuchigami, Y., Oki, K., Horvat, M., et al. (2006). Spatial variations of mercury in sediment of Minamata Bay, Japan. Science of the Total Environment, 368, 283–290. doi:10.1016/j.scitotenv.2005.09.090.

    Article  CAS  Google Scholar 

  • Vignati, D., Pardos, M., Diserens, J., Ugazio, G., Thomas, R., & Dominik, J. (2003). Characterisation of bed sediments and suspension of the river Po (Italy) during normal and high flow conditions. Water Research, 37, 2847–2864. doi:10.1016/S0043-1354(03)00133-7.

    Article  CAS  Google Scholar 

  • Woitke, P., Wellmitz, J., Helm, D., Kube, P., Lepom, P., & Litheraty, P. (2003). Analysis and assessment of heavy metal pollution in suspended solids and sediments of the river Danube. Chemosphere, 51, 633–642. doi:10.1016/S0045-6535(03)00217-0.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radmila Milačič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milačič, R., Ščančar, J., Murko, S. et al. A complex investigation of the extent of pollution in sediments of the Sava River. Part 1: Selected elements. Environ Monit Assess 163, 263–275 (2010). https://doi.org/10.1007/s10661-009-0832-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-0832-x

Keywords

Navigation