Skip to main content
Log in

The problem of sharp notch in microstructured solids governed by dipolar gradient elasticity

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

In this paper, we deal with the asymptotic problem of a body of infinite extent with a notch (re-entrant corner) under remotely applied plane-strain or anti-plane shear loadings. The problem is formulated within the framework of the Toupin-Mindlin theory of dipolar gradient elasticity. This generalized continuum theory is appropriate to model the response of materials with microstructure. A linear version of the theory results by considering a linear isotropic expression for the strain-energy density that depends on strain- gradient terms, in addition to the standard strain terms appearing in classical elasticity. Through this formulation, a microstructural material constant c is introduced, in addition to the standard Lamé constants (λ, μ). The faces of the notch are considered to be traction-free and a boundary-layer approach is followed. The boundary value problem is attacked with the asymptotic Knein-Williams technique. Our analysis leads to an eigenvalue problem, which, along with the restriction of a bounded strain energy, provides the asymptotic fields. The cases of a crack and a half-space are analyzed in detail as limit cases of the general notch (infinite wedge) problem. The results show significant departure from the predictions of the standard fracture mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amanatidou E, Aravas N (2002) Mixed finite element formulations of strain-gradient elasticity problems. Comput Meth Appl Mech Eng 191: 1723–1751

    Article  MATH  Google Scholar 

  • Aravas N, Giannakopoulos AE (2009) Plane asymptotic crack-tip solutions in gradient elasticity. Int J Solids Struct 46: 4478–4503

    Article  MATH  Google Scholar 

  • Barber JR (1992) Elasticity. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  • Bardella L, Giacomini A (2008) Influence of material parameters and crystallography on the size effects describable by means of strain gradient plasticity. J Mech Phys Solids 56: 2906–2934

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  • Begley MR, Hutchinson JW (1998) The mechanics of size-dependent indentation. J Mech Phys Solids 46: 2049–2068

    Article  MATH  CAS  ADS  Google Scholar 

  • Bleustein JL (1967) A note on the boundary conditions of Toupin’s strain-gradient theory. Int J Solids Struct 3: 1053–1057

    Article  Google Scholar 

  • Bogy DB, Sternberg E (1968) The effect of couple-stresses on the corner singularity due to an asymmetric shear loading. Int J Solids Struct 4: 159–174

    Article  MATH  Google Scholar 

  • Brahtz JHA (1933) Stress distribution in a re-entrant corner. Trans ASME Ser E 55: 31–37

    Google Scholar 

  • Chang CS, Shi Q, Liao CL (2003) Elastic constants for granular materials modeled as first-order strain-gradient continua. Int J Solids Struct 40: 5565–5582

    Article  MATH  Google Scholar 

  • Chen JY, Huang Y, Ortiz M (1998) Fracture analysis of cellular materials: a strain gradient model. J Mech Phys Solids 46: 789–828

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Chen JY, Wei Y, Huang Y, Hutchinson JW, Hwang KC (1999) The crack tip fields in strain gradient plasticity: the asymptotic and numerical analyses. Eng Frac Mech 64: 625–648

    Article  Google Scholar 

  • Cleveringa HHM, Van der Giessen E, Needleman A (2000) A discrete dislocation analysis of mode I crack growth. J Mech Phys Solids 48: 1133–1157

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  • Cook TS, Weitsman Y (1966) Strain-gradient effects around spherical inclusions and cavities. Int J Solids Struct 2: 393–406

    Article  Google Scholar 

  • Dundurs J, Markenscoff X. (1989) The Sternberg-Koiter conclusion and other anomalies of the concentrated couple. ASME J Appl Mech 56: 240–245

    Article  MATH  MathSciNet  Google Scholar 

  • Elssner G, Korn D, Ruhle M (1994) The influence of interface impurities on fracture energy of UHV diffusion bonded metal-ceramic bicrystals. Scripta Metall Mater 31: 1037–1042

    Article  CAS  Google Scholar 

  • Engel G, Garikipati K, Hughes TJR, Larson MG, Mazzei L, Taylor RL (2002) Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput Methods Appl Mech Eng 191: 3669–3750

    Article  MATH  MathSciNet  Google Scholar 

  • Eshel NN, Rosenfeld G (1970) Effects of strain-gradient on the stress-concentration at a cylindrical hole in a field of uniaxial tension. J Eng Math 4: 97–111

    Article  MATH  Google Scholar 

  • Eshel NN, Rosenfeld G (1975) Axi-symmetric problems in elastic materials of grade two. J Franklin Inst 299: 43–51

    Article  MATH  Google Scholar 

  • Farnell GW (1978) Types and properties of surface waves. In: Oliner AA (ed) Acoustic surface waves. Springer, Berlin, pp 13–60

    Google Scholar 

  • Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42: 475–487

    Article  CAS  Google Scholar 

  • Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. In: Hutchinson JW, Wu TY (eds) Advances in applied mechanics, vol 33. Academic Press, New York, pp 295–361

    Chapter  Google Scholar 

  • Fleck NA, Hutchinson JW (1998) A discussion of strain gradient plasticity theories and application to shear bands. In: de Borst R, van der Giessen E (eds) Material instabilities in solids. Wiley, New York, pp 507–519

    Google Scholar 

  • Gao H, Huang Y, Nix WD, Hutchinson JW (1999) Mechanism-based strain gradient plasticity—I. Theory. J Mech Phys Solids 47: 1239–1263

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Gazis DC, Herman R, Wallis RF (1960) Surface elastic waves in cubic crystals. Phys Rev 119: 533–544

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  • Georgiadis HG, Vardoulakis I, Lykotrafitis G (2000) Torsional surface waves in a gradient-elastic half-space. Wave Motion 31: 333–348

    Article  MATH  MathSciNet  Google Scholar 

  • Georgiadis HG (2003) The mode-III crack problem in microstructured solids governed by dipolar gradient elasticity: static and dynamic analysis. ASME J Appl Mech 70: 517–530

    Article  MATH  Google Scholar 

  • Georgiadis HG, Vardoulakis I, Velgaki EG (2004) Dispersive Rayleigh-wave propagation in microstructured solids characterized by dipolar gradient elasticity. J Elast 74: 17–45

    Article  MATH  MathSciNet  Google Scholar 

  • Georgiadis HG, Grentzelou CG (2006) Energy theorems and the J-integral in dipolar gradient elasticity. Int J Solids Struct 43: 5690–5712

    Article  MATH  CAS  MathSciNet  Google Scholar 

  • Georgiadis HG, Anagnostou DS (2008) Problems of the Flamant-Boussinesq and Kelvin type in dipolar gradient elasticity. J Elast 90: 71–98

    Article  MATH  MathSciNet  Google Scholar 

  • Germain P (1973) The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J Appl Math 25: 556–575

    Article  MATH  MathSciNet  Google Scholar 

  • Giannakopoulos AE, Amanatidou E, Aravas N (2006) A reciprocity theorem in linear gradient elasticity and the corresponding Saint-Venant principle. Int J Solids Struct 43: 3875–3894

    Article  MATH  MathSciNet  Google Scholar 

  • Gourgiotis PA, Georgiadis HG (2008) An approach based on distributed dislocations and disclinations for crack problems in couple-stress elasticity. Int J Solids Struct 45: 5521–5539

    Article  MATH  Google Scholar 

  • Gourgiotis PA, Georgiadis HG (2009) Plane-strain crack problems in microstructured solids governed by dipolar gradient elasticity. J Mech Phys Solids 57: 1898–1920

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Green AE, Rivlin RS (1964) Multipolar continuum mechanics. Arch Ration Mech Anal 17: 113–147

    Article  MATH  MathSciNet  Google Scholar 

  • Green AE, McInnis BC, Naghdi PM (1968) Elastic-plastic continua with simple force dipole. Int J Eng Sci 6: 373–394

    Article  MATH  Google Scholar 

  • Gregory RD (1979) Green’s functions, bi-linear forms, and completeness of the eigenfunctions for the elastostatic strip and wedge. J Elast 9: 283–309

    Article  MATH  MathSciNet  Google Scholar 

  • Grentzelou CG, Georgiadis HG (2005) Uniqueness for plane crack problems in dipolar gradient elasticity and in couple-stress elasticity. Int J Solids Struct 42: 6226–6244

    Article  MATH  MathSciNet  Google Scholar 

  • Grentzelou CG, Georgiadis HG (2008) Balance laws and energy release rates for cracks in dipolar gradient elasticity. Int J Solids Struct 45: 551–567

    Article  MATH  Google Scholar 

  • Gurtin ME (2004) A gradient theory of small-deformation isotropic plasticity that accounts for the Burgers vector and for dissipation due to plastic spin. J Mech Phys Solids 52: 2545–2568

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Harrington WJ, Ting TW (1971) Stress boundary-value problems for infinite wedges. J Elast 1: 65–81

    Article  Google Scholar 

  • Huang Y, Zhang L, Guo TF, Hwang KC (1997) Mixed mode near tip fields for cracks in materials with strain-gradient effects. J Mech Phys Solids 45: 439–465

    Article  MATH  ADS  Google Scholar 

  • Huang Y, Gao H, Nix WD, Hutchinson JW (2000) Mechanism-based strain gradient plasticity—II. Analysis. J Mech Phys Solids 48: 99–128

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Huang Y, Qu S, Hwang KC, Li M, Gao H (2004) A conventional theory of mechanism-based strain gradient plasticity. Int J Plast 20: 753–782

    Article  MATH  Google Scholar 

  • Hutchinson JW (1968) Singular behavior at the end of a tensile crack in a hardening material. J Mech Phys Solids 16: 13–31

    Article  MATH  ADS  Google Scholar 

  • Hwang KC, Jiang H, Huang Y, Gao H, Hu N (2002) A finite deformation theory of strain gradient plasticity. J Mech Phys Solids 50: 81–99

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Jaunzemis W (1967) Continuum mechanics. McMillan, New York

    MATH  Google Scholar 

  • Karlis GF, Tsinopoulos SV, Polyzos D, Beskos DE (2007) Boundary element analysis of mode I and mixed mode (I and II) crack problems of 2-D gradient elasticity. Comp Meth Appl Mech Eng 196: 5092–5103

    Article  MATH  Google Scholar 

  • Karp SN, Karal FC (1962) The elastic-field behavior in the neighborhood of a crack of arbitrary angle. Comm Pure Appl Math 15: 413–421

    Article  MATH  MathSciNet  Google Scholar 

  • Knein M (1927) Zur Theorie des Druckversuchs. Abhandlungen Aerodyn. Inst. T.H. Aachen 7: 43–62

    Google Scholar 

  • Lazar M, Maugin GA (2005) Nonsingular stress and strain fields of dislocations and disclinations in first strain gradient elasticity. Int J Eng Sci 43: 1157–1184

    Article  CAS  MathSciNet  Google Scholar 

  • Lazar M, Maugin GA (2006) A note on line forces in gradient elasticity. Mech Res Commun 33: 674–680

    Article  MATH  MathSciNet  Google Scholar 

  • Lazar M, Kirchner HOK (2007) The Eshelby stress tensor, angular momentum tensor and dilatation flux in gradient elasticity. Int J Solids Struct 44: 2477–2486

    Article  MATH  MathSciNet  Google Scholar 

  • Leguillon D (1988) Sur le moment ponctuel appliqué a un secteur: le paradoxe de Sternberg-Koiter. CR Acad Sci Paris series II 307: 1741–1746

    MATH  Google Scholar 

  • Markolefas SI, Tsouvalas DA, Tsamasphyros GI (2008a) Some C0-continuous mixed formulations for general dipolar linear gradient elasticity boundary value problems and the associated energy theorems. Int J Solids Struct 45: 3255–3281

    Article  MATH  Google Scholar 

  • Markolefas SI, Tsouvalas DA, Tsamasphyros GI (2008b) Mixed finite element formulation for the general anti-plane shear problem, including mode III crack computations, in the framework of dipolar linear gradient elasticity. Comput Mech 45: 1–16

    Google Scholar 

  • Maugin GA (1979) Nonlocal theories or gradient-type theories: a matter of convenience?.  Arch Mech 31: 15–26

    MATH  MathSciNet  Google Scholar 

  • Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16: 51–78

    Article  MATH  MathSciNet  Google Scholar 

  • Mindlin RD, Eshel NN (1968) On first-gradient theories in linear elasticity. Int J Solids Struct 4: 109–124

    Article  MATH  Google Scholar 

  • Morozov NF, Narbut MA (1995) Antiplane deformation of an elastic wedge under action concentrated near the corner point. J Appl Maths Mechs 56: 307–309

    Article  MathSciNet  Google Scholar 

  • Movchan AB, Nazarov SA (1990) On the state of stress and strain near cone apices. PMM 54: 231–242

    MATH  MathSciNet  Google Scholar 

  • Movchan AB, Nazarov SA (1992) Asymptotic behavior of stress–strain state in the vicinity of sharp defects in an elastic body. IMA J Appl Math 49: 245–272

    Article  MATH  MathSciNet  Google Scholar 

  • Neuber H (1963) Losü  ng des Carothers-problems mittels prinzipien der kraftübertragung (Keil mit moment an der spitze). ZAMM 43: 211–228

    Article  MATH  MathSciNet  Google Scholar 

  • Oden JT, Rigsby DM, Cornett D (1970) On the numerical solution of a class of problems in a linear first strain-gradient theory of elasticity. Int J Numer Methods Eng 2: 159–174

    Article  MATH  Google Scholar 

  • Prakash V, Freund LB, Clifton RJ (1992) Stress wave radiation from a crack tip during dynamic initiation. ASME J Appl Mech 59: 356–365

    Article  CAS  Google Scholar 

  • Radi E, Gei M (2004) Mode III crack growth in linear hardening materials with strain gradient effects. Int J Frac 130: 765–785

    Article  MATH  Google Scholar 

  • Radi E (2007) Effects of characteristic material lengths on mode III crack propagation in couple stress elastic-plastic materials. Int J Plast 23: 1439–1456

    Article  MATH  CAS  Google Scholar 

  • Radi E (2008) On the effects of characteristic lengths in bending and torsion on Mode III crack in couple stress elasticity. Int J Solids Struct 45: 3033–3058

    Article  MATH  Google Scholar 

  • Rice JR, Rosengren GF (1968) Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids 16: 1–12

    Article  MATH  ADS  Google Scholar 

  • Shi MX, Huang Y, Gao H, Hwang KC (2000a) Non-existence of separable crack tip field in mechanism-based gradient plasticity. Int J Solids Struct 37: 5995–6010

    Article  MATH  Google Scholar 

  • Shi MX, Huang Y, Hwang KC (2000b) Fracture in the higher-order elastic continuum. J Mech Phys Solids 48: 2513–2538

    Article  MATH  ADS  Google Scholar 

  • Shi MX, Huang Y, Gao H (2004) The J-integral and geometrically necessary dislocations in non-uniform plastic deformation. Int J Plast 20: 1739–1762

    Article  MATH  Google Scholar 

  • Shu JY, King WE, Fleck NA (1999) Finite elements for materials with strain gradient effects. Int J Numer Methods Eng 44: 373–391

    Article  MATH  Google Scholar 

  • Sinclair GB (2004) Stress singularities in classical elasticity—II: asymptotic identification. Appl Mech Rev 57: 385–439

    Article  Google Scholar 

  • Stephen NG, Wang PJ (1999) Saint-Venant’s principle and the plane elastic wedge. Int J Solids Struct 36: 345–361

    Article  MATH  MathSciNet  Google Scholar 

  • Sternberg E, Koiter WT (1958) The wedge under concentrated couple: a paradox in the two dimensional theory of elasticity. ASME J Appl Mech 26: 472–474

    Google Scholar 

  • Toupin RA (1962) Perfectly elastic materials with couple stresses. Arch Ration Mech Anal 11: 385–414

    Article  MATH  MathSciNet  Google Scholar 

  • Tsamasphyros GI, Markolefas S, Tsouvalas DA (2007) Convergence and performance of the h- and p-extensions with mixed finite element C0-continuity formulations, for tension and buckling of a gradient elastic beam. Int J Solids Struct 44: 5056–5074

    Article  MATH  MathSciNet  Google Scholar 

  • Tsepoura KG, Papargyri-Beskou S, Polyzos D (2002) A boundary element method for solving 3D static gradient elastic problems with surface energy. Comput Mech 29: 361–381

    Article  MATH  Google Scholar 

  • Vardoulakis I, Sulem J (1995) Bifurcation analysis in geomechanics. Blackie Academic and Professional (Chapman and Hall), London

    Google Scholar 

  • Vardoulakis I, Georgiadis HG (1997) SH surface waves in a homogeneous gradient elastic half-space with surface energy. J Elast 47: 147–165

    Article  MATH  MathSciNet  Google Scholar 

  • Wei Y, Hutchinson JW (1997) Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity. J Mech Phys Solids 45: 1253–1273

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Wei Y (2006) A new finite element method for strain gradient theories and applications to fracture analyses. Eur J Mech A/Solids 25: 897–913

    Article  MATH  MathSciNet  Google Scholar 

  • White RM (1970) Surface elastic waves. Proc IEEE 58: 1238–1276

    Article  Google Scholar 

  • Williams ML (1952) Stress singularities resulting from various boundary conditions in angular corners of plates in extension. ASME J Appl Mech 74: 526–528

    Google Scholar 

  • Xiao QZ, Karihaloo BL (2006) Asymptotic fields at frictionless and frictional cohesive crack tips in quasi-brittle materials. J Mech Mater Struct 1: 881–910

    Article  Google Scholar 

  • Zhang L, Huang Y, Chen JY, Hwang KC (1998) The mode-III full-field solution in elastic materials with strain gradient effects. Int J Frac 92: 325–348

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. G. Georgiadis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gourgiotis, P.A., Sifnaiou, M.D. & Georgiadis, H.G. The problem of sharp notch in microstructured solids governed by dipolar gradient elasticity. Int J Fract 166, 179–201 (2010). https://doi.org/10.1007/s10704-010-9523-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9523-4

Keywords

Navigation