Skip to main content
Log in

On the Rank 1 Convexity of Stored Energy Functions of Physically Linear Stress-Strain Relations

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The rank 1 convexity of stored energy functions corresponding to isotropic and physically linear elastic constitutive relations formulated in terms of generalized stress and strain measures [Hill, R.: J. Mech. Phys. Solids 16, 229–242 (1968)] is analyzed. This class of elastic materials contains as special cases the stress-strain relationships based on Seth strain measures [Seth, B.: Generalized strain measure with application to physical problems. In: Reiner, M., Abir, D. (eds.) Second-order Effects in Elasticity, Plasticity, and Fluid Dynamics, pp. 162–172. Pergamon, Oxford, New York (1964)] such as the St.Venant–Kirchhoff law or the Hencky law. The stored energy function of such materials has the form

$\widetilde{W}{\left( {\user2{F}} \right)} = W{\left( \alpha \right)}: = \frac{1}{2}{\sum\limits_{i = 1}^3 {f{\left( {\alpha _{i} } \right)} + \beta } }{\sum\limits_{1 \leqslant i < j \leqslant 3} {f{\left( {\alpha _{i} } \right)}f{\left( {\alpha _{j} } \right)}} },$

where \(f:{\left( {0,\infty } \right)} \to \mathbb{R}\) is a function satisfying \(f{\left( 1 \right)} = 0,\;f'{\left( 1 \right)} = 1,\;\beta \in \mathbb{R}\), and α 1, α 2, α 3 are the singular values of the deformation gradient \({\user2{F}}\). Two general situations are determined under which \(\widetilde{W}\) is not rank 1 convex: (a) if (simultaneously) the Hessian of W at α is positive definite, \(\beta \ne 0\), and f is strictly monotonic, and/or (b) if f is a Seth strain measure corresponding to any \(m \in \mathbb{R}\). No hypotheses about the range of f are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ball, J.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63, 337–403 (1977)

    Article  ADS  MATH  Google Scholar 

  2. Carlson, D.E., Hoger, A.: The derivative of a tensor-valued function of a tensor. Quart. Appl. Math. 44, 409–423 (1986)

    MathSciNet  MATH  Google Scholar 

  3. Ciarlet, P.: Mathematical Elasticity: Three-dimensional Elasticity, vol. I. Elsevier, Amsterdam (1988)

    Google Scholar 

  4. Dacorogna, B.: Direct Methods in the Calculus of Variations. Springer, Berlin Heidelberg New York (1989)

    MATH  Google Scholar 

  5. Hill, R.: On constitutive inequalities for simple materials. J. Mech. Phys. Solids 16, 229–242 (1968)

    Article  MATH  ADS  Google Scholar 

  6. Krawietz, A.: Materialtheorie. Springer, Berlin Heidelberg New York (1986)

    MATH  Google Scholar 

  7. Neff, P.: Mathematische Analyse Multiplikativer Elastoplastizität. Berichte aus der Mathematik. Shaker, Verlag (2000)

    Google Scholar 

  8. Raoult, A.: Non-polyconvexity of the stored energy function of a Saint Venant–Kirchhoff material. Appl. Math. 6, 417–419 (1986)

    MathSciNet  Google Scholar 

  9. Seth, B.: Generalized strain measure with application to physical problems. In: Reiner, M., Abir, D. (eds.) Second-order Effects in Elasticity, Plasticity, and Fluid Dynamics, pp. 162–172. Pergamon, Oxford, New York (1964)

    Google Scholar 

  10. Truesdell, C., Noll, W.: The Non-linear Field Theories of Mechanics, vol. III/3 of Encyclopedia of Physics. Springer, Berlin Heidelberg New York (1965)

    Google Scholar 

  11. Šilhavý, M.: The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin Heidelberg New York (1997)

    MATH  Google Scholar 

  12. Šilhavý, M.: Monotonicity of rotationally invariant convex and rank 1 convex functions. Proc. Roy. Soc. Edinburgh 13A, 419–435 (2002)

    Google Scholar 

  13. Xiao, H., Bruhns, O., Meyers, A.: Strain rates and material spins. J. Elasticity 52, 1–41 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Böhlke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertram, A., Böhlke, T. & Šilhavý, M. On the Rank 1 Convexity of Stored Energy Functions of Physically Linear Stress-Strain Relations. J Elasticity 86, 235–243 (2007). https://doi.org/10.1007/s10659-006-9091-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-006-9091-z

Key words

Mathematics Subject Classifications (2000)

Navigation