Skip to main content

Advertisement

Log in

Generalized Baker–Ericksen Inequalities

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

It is well known that isotropic, nonlinearly elastic materials satisfy the Baker–Ericksen inequalities as a consequence of the strong ellipticity or rank 1 convexity. Here we present a generalization to a non-isotropic elastic material which posseses a preferred element in the symmetry group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, M., Ericksen, J.E.: Inequalities restricting the form of the stress-deformation relations for isotropic elastic solids and Reiner–Rivlin fluids. J. Wash. Acad. Sci. 44, 33–35 (1954)

    MathSciNet  Google Scholar 

  2. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63, 337–403 (1977)

    Article  MATH  Google Scholar 

  3. Ball, J.M.: Discontinuous equilibrium solutions and cavitation of non-linear elasticity. Phil. Trans. R. Soc. London A306, 557–611 (1982)

    Article  ADS  Google Scholar 

  4. Ball, J.M.: Differentiability properties of symmetric and isotropic functions. Duke Math. J. 51, 699–728 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ball, J., James, R.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100, 13–52 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hayes, M.: Static implications of the strong-ellipticity condition. Arch. Ration. Mech. Anal. 33, 181–191 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  7. Knowles, J.K., Sternberg, E.: On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch. Ration. Mech. Anal. 63, 321–326 (1977)

    MathSciNet  MATH  Google Scholar 

  8. Mizel, V.J.: On the ubiquity of fracture in nonlinear elasticity. J. Elast. 52, 257–266 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Šilhavý, M.: Monotonicity of rotationally invariant convex and rank 1 convex functions. Proc. R. Soc. Edinb. 132A, 419–435 (2002)

    Article  Google Scholar 

  10. Šilhavý, M.: Energy minimization for isotropic nonlinear elastic bodies. In: Owen, D., Del Piero, G. (eds.) Multiscale Modeling in Continuum Mechanics and Structured Deformations, pp. 1–51. Springer, Berlin Heidelberg New York (2004)

    Google Scholar 

  11. Simpson, H.C., Spector, S.J.: On copositive matricies and strong ellipticity for isotropic elastic materials. Arch. Ration. Mech. Anal. 84, 55–68 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Flugge, S. (ed.) Handbuch der Physik III/3. Springer, Berlin Heidelberg New York (1965)

    Google Scholar 

  13. Wang, Y., Aron, M.A.: A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. J. Elast. 44, 89–96 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Fosdick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fosdick, R., Šilhavý, M. Generalized Baker–Ericksen Inequalities. J Elasticity 85, 39–44 (2006). https://doi.org/10.1007/s10659-006-9069-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-006-9069-x

Mathematics Subject Classifications (2000)

Key words

Navigation