Skip to main content
Log in

Some Remarks on the Weakly Nonlinear Theory of Isotropic Elasticity

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

Third- and fourth-order weakly nonlinear theories of elasticity are widely used by applied mathematicians, physicists and acousticians. Although their introduction is traced back to a paper by Signorini dated 1930, some aspects related to the rigorous mathematical derivation of the strain energy for quasi-incompressible isotropic elastic solids are not satisfactorily clear. In this paper we address these aspects and use our results to discuss the incompressible limit of some fourth-order nonlinear constitutive parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abiza, Z., Destrade, M., Ogden, R.W.: Large acoustoelastic effect. Wave Motion 49, 364–374 (2012)

    Article  MathSciNet  Google Scholar 

  2. Beatty, M.F., Stalnaker, D.O.: The Poisson function of finite elasticity. J. Appl. Mech. 53, 807–813 (1986)

    Article  ADS  Google Scholar 

  3. Catheline, S., Gennisson, J.L., Tanter, M., Fink, M.: Observation of shock transverse waves in elastic media. Phys. Rev. Lett. 91, 164301 (2003)

    Article  ADS  Google Scholar 

  4. Coleman, B.D., Gurtin, M.H., Herrera, R.I., Truesdell, C.A.: Wave Propagation in Dissipative Materials: A Reprint of Five Memoirs. Arch. Ration. Mech. Anal. Springer, Berlin (1965)

    Book  Google Scholar 

  5. Destrade, M., Ogden, R.W.: On the third- and fourth-order constants of incompressible isotropic elasticity. J. Acoust. Soc. Am. 128, 3334–3343 (2010)

    Article  ADS  Google Scholar 

  6. Destrade, M., Saccomandi, G., Sgura, I.: Methodical fitting for mathematical models of rubber-like materials. Proc. R. Soc. A 473, 20160811 (2017)

    Article  ADS  Google Scholar 

  7. Destrade, M., Murphy, J., Saccomandi, G.: Rivlin’s legacy in continuum mechanics and applied mathematics. Philos. Trans. R. Soc. 377, 20190090 (2019)

    Article  ADS  Google Scholar 

  8. Domański, W.: Propagation and interaction of non-linear elastic plane waves in soft solids. Int. J. Non-Linear Mech. 44, 494–498 (2009)

    Article  ADS  Google Scholar 

  9. Hamilton, M.F., Ilinskii, Y.A., Zabolotskaya, E.A.: Separation of compressibility and shear deformation in the elastic energy density (L). J. Acoust. Soc. Am. 116, 41–44 (2004)

    Article  ADS  Google Scholar 

  10. Jacob, X., Catheline, S., Gennisson, J.L., Barrière, C., Royer, D., Fink, M.: Nonlinear shear wave interaction in soft solids. J. Acoust. Soc. Am. 122, 1917–1926 (2007)

    Article  ADS  Google Scholar 

  11. Kostek, S., Sinha, B.K., Norris, A.N.: Third-order elastic constants for an inviscid fluid. J. Acoust. Soc. Am. 94, 3014–3017 (1993)

    Article  ADS  Google Scholar 

  12. Kralisnikov, V.A., Zarembo, L.K.: Nonlinear interaction of elastic waves in solids. IEEE Trans. Sonics Ultrason. 14, 12–17 (1967)

    Article  Google Scholar 

  13. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, 3rd edn. Butterworth-Heineman, Oxford (1986)

    MATH  Google Scholar 

  14. Lurie, A.I.: Theory of Elasticity. Springer, Berlin (2010)

    Google Scholar 

  15. Lurie, A.I.: Non-linear Theory of Elasticity. Elsevier, Amsterdam (2012)

    Google Scholar 

  16. Mihai, L.A., Goriely, A.: How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity. Proc. R. Soc. A 473, 20170607 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  17. Noll, W., Truesdell, C.A.: The Non-linear Field Theories of Mechanics. Springer, Berlin (1992)

    MATH  Google Scholar 

  18. Norris, A.N.: Finite amplitude waves in solids. In: Nonlinear Acoustics. Academic Press, Boston (1998)

    Google Scholar 

  19. Ogden, R.W.: Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubber-like solids. Proc. - Royal Soc. A 326, 565–584 (1972)

    MATH  ADS  Google Scholar 

  20. Ogden, R.W.: Incremental statics and dynamics of pre-stressed elastic materials. In: Waves in Nonlinear Pre-Stressed Materials. CISM Lecture Notes. Springer, Berlin (2007)

    Google Scholar 

  21. Ogden, R.W., Saccomandi, G., Sgura, I.: Fitting hyperelastic models to experimental data. Comput. Mech. 34, 484–502 (2004)

    Article  Google Scholar 

  22. Pucci, E., Saccomandi, G., Vergori, L.: Linearly polarized waves of finite amplitude in pre-strained elastic materials. Proc. R. Soc. A 475, 20180891 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  23. Puglisi, G., Saccomandi, G.: Multi-scale modelling of rubber-like materials and soft tissues: an appraisal. Proc. R. Soc. A 472, 20160060 (2016)

    Article  ADS  Google Scholar 

  24. Rénier, M., Gennisson, J.-L., Barrière, C., Royer, D., Fink, M.: Fourth-order shear elastic constant assessment in quasi-incompressible soft solids. Appl. Phys. Lett. 93, 101912 (2008)

    Article  ADS  Google Scholar 

  25. Scott, N.H.: The incremental bulk modulus, Young’s modulus and Poisson’s ratio in nonlinear isotropic elasticity: physically reasonable response. Math. Mech. Solids 12, 526–542 (2007)

    Article  MathSciNet  Google Scholar 

  26. Seth, B.R.: Finite strain in elastic problems. Philos. Trans. R. Soc. 234, 231–264 (1935)

    MATH  ADS  Google Scholar 

  27. Seth, B.R.: Finite bending of plates into cylindrical shells. Ann. Mat. Pura Appl. 50, 119–125 (1960)

    Article  MathSciNet  Google Scholar 

  28. Signorini, A.: Sulle Deformazioni Termoelastiche Finite. Proc. 3rd Int. Congr. Appl. Mech., vol. 2, pp. 80–89 (1930)

    MATH  Google Scholar 

  29. Zabolotskaya, E.A.: Sound beams in a nonlinear isotropic solid. Sov. Phys. Acoust. 32, 296–299 (1986)

    Google Scholar 

  30. Zabolotskaya, E.A., Hamilton, M.F., Ilinskii, Y.A., Meegan, G.D.: Modeling of nonlinear shear waves in soft solids. J. Acoust. Soc. Am. 116, 2807–2813 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors have been partially supported by GNFM of Italian INDAM, by Fondo di Ricerca di Base 2019 of the University of Perugia, and by the PRIN 2017 research project (n. 2017KL4EF3) “Mathematics of active materials: from mechanobiology to smart devices”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Vergori.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Connections Between the Fully and Weakly Nonlinear Models for the Strain Energy Function

1.1 A.1 Compressible Materials

In view of the relations (16) between the invariants of the Cauchy-Green deformation tensors and those of the Green-Lagrange strain tensor, up to terms of the fourth order in the strain, the fully nonlinear model for the strain energy (7) approximates to (15) providing that

$$ \overline{W}_{1}+\overline{W}_{2}=\frac{\mu }{2}, $$
(101a)
$$ \overline{W}_{2}+\overline{W}_{3}+\overline{W}_{11}+4\overline{W}_{12}+4 \overline{W}_{22}+2\overline{W}_{13}+4\overline{W}_{23}+ \overline{W}_{33}=\frac{\lambda }{4}, $$
(101b)
$$ \overline{W}_{3}=\frac{A}{8}, $$
(101c)
$$ \overline{W}_{3}+\overline{W}_{12}+\overline{W}_{13}+2 \overline{W}_{22}+3\overline{W}_{23}+\overline{W}_{33}=-\frac{B}{4}, $$
(101d)
$$\begin{aligned} &\overline{W}_{3}+3\overline{W}_{12}+3\overline{W}_{13}+6 \overline{W}_{22}+9\overline{W}_{23}+3\overline{W}_{33} \\ &{}+\overline{W}_{111}+6\overline{W}_{112}+3\overline{W}_{113}+12 \overline{W}_{122}+12\overline{W}_{123} \\ &{}+3\overline{W}_{133}+8\overline{W}_{222}+12\overline{W}_{223}+6 \overline{W}_{233}+\overline{W}_{333}=\frac{C}{4}, \end{aligned}$$
(101e)
$$ \overline{W}_{13}+2\overline{W}_{23}+\overline{W}_{33}= \frac{3}{16}E, $$
(101f)
$$\begin{aligned} &2\overline{W}_{13}+\overline{W}_{22}+6\overline{W}_{23}+3 \overline{W}_{33}+\overline{W}_{112}+\overline{W}_{113}+4 \overline{W}_{122} \\ &{}+6\overline{W}_{123} +2\overline{W}_{133} +4 \overline{W}_{222}+8 \overline{W}_{223} +5\overline{W}_{233} +\overline{W}_{333}=- \frac{F}{4}, \end{aligned}$$
(101g)
$$ \overline{W}_{22}+2\overline{W}_{23}+\overline{W}_{33}=\frac{G}{2}, $$
(101h)
$$\begin{aligned} &4\overline{W}_{13}+3\overline{W}_{22}+14\overline{W}_{23}+7 \overline{W}_{33}+6\overline{W}_{112}+6\overline{W}_{113}+24 \overline{W}_{122} \\ &{}+36\overline{W}_{123}+12\overline{W}_{133}+24\overline{W}_{222}+48 \overline{W}_{223}+30\overline{W}_{233}+6\overline{W}_{333} \\ &{}+\overline{W}_{1111}+8\overline{W}_{1112}+4\overline{W}_{1113}+24 \overline{W}_{1122}+24\overline{W}_{1123}+6\overline{W}_{1133} \\ &{}+32\overline{W}_{1222}+48\overline{W}_{1223}+24\overline{W}_{1233}+4 \overline{W}_{1333}+16\overline{W}_{2222}+32\overline{W}_{2223} \\ &{}+24\overline{W}_{2233}+8\overline{W}_{2333}+\overline{W}_{3333}= \frac{3}{2} H, \end{aligned}$$
(101i)

where the overbars denote quantities evaluated at the reference configuration \((I_{1},I_{2},I_{3})=(3,3,1)\).

1.2 A.2 Incompressible Materials

On using \(\text{(16)}_{1,2}\) we deduce that the fully nonlinear model for an incompressible isotropic hyperelastic solid is consistent with the weakly nonlinear model (29) providing that (101a) and

$$ \left . \textstyle\begin{array}{c} \overline{W}_{1}+2\overline{W}_{2}=-\displaystyle \frac{A}{8}, \\ \overline{W}_{1}+3\overline{W}_{2}+\overline{W}_{11}+2 \overline{W}_{12}+\overline{W}_{22}=\displaystyle \frac{D}{2}, \end{array}\displaystyle \right . $$
(102)

are satisfied.

Appendix B: Inversion of Equations (45a)–(45f)

Inverting the system (45a)–(45f) yields the volumetric strain \(\upsilon \), its powers \(\upsilon ^{2}\) and \(\upsilon ^{3}\), the deviatoric invariants \(\mathcal{J}^{\star }_{2}\) and \(\mathcal{J}^{\star }_{3}\), and \(\upsilon \mathcal{J}^{\star }_{2}\) in terms of the invariants of the second Piola-Kirchhoff stress tensor. Specifically, \(\upsilon \) is as in (46), and

$$ \kappa ^{2}\upsilon ^{2}=\frac{S_{1}^{2}}{9}+\left (\frac{2}{9\mu }- \frac{\mu _{1}}{6\mu ^{2}}\right )S_{1}S_{2}+\left ( \frac{\mu _{1}}{18\mu ^{2}}-\frac{2}{81\kappa }-\frac{2}{27\mu }- \frac{\mathcal{E}_{3}}{27\kappa ^{2}}\right )S_{1}^{3}, $$
(103a)
$$\begin{aligned} \mathcal{J}^{\star }_{2}&=-\frac{S_{1}^{2}}{12\mu ^{2}}+ \frac{S_{2}}{4\mu ^{2}}-\frac{A}{8\mu ^{4}}S_{3}+\left ( \frac{A}{8\mu ^{4}}+\frac{1}{6\mu ^{3}}+\frac{1}{9\mu ^{2}\kappa }- \frac{\mu _{1}}{6\mu ^{3}\kappa }\right )S_{1}S_{2} \\ &{}+\left (\frac{\mu _{1}}{18\mu ^{3}\kappa }-\frac{1}{27\mu ^{2}\kappa }- \frac{1}{18\mu ^{3}}-\frac{A}{36\mu ^{4}}\right )S_{1}^{3}, \end{aligned}$$
(103b)
$$ \mathcal{J}^{\star }_{3}=\frac{S_{3}}{8\mu ^{3}}- \frac{S_{1}S_{2}}{8\mu ^{3}}+\frac{S_{1}^{3}}{36\mu ^{3}}, $$
(103c)
$$ \kappa \upsilon \mathcal{J}^{\star }_{2}=\frac{S_{1}S_{2}}{12\mu ^{2}}- \frac{S_{1}^{3}}{36\mu ^{2}}, $$
(103d)
$$ \upsilon ^{2}=\frac{S_{1}^{3}}{27\kappa ^{3}}. $$
(103e)

Appendix C: Inversion of Equations (51a)–(51f)

In terms of the invariants of the second Piola-Kirchhoff stress tensor, the deviatoric invariants \(\mathcal{J}^{\star }_{2}\) and \(\mathcal{J}^{\star }_{3}\), the Lagrange multiplier \(p\) is as in (52), and its powers \(p^{2}\) and \(p^{3}\), and \(p\mathcal{J}^{\star }_{2}\) read

$$ p^{2}=\frac{S_{1}^{2}}{9}-\frac{A+2\mu }{18\mu ^{2}}S_{1}S_{2}+ \frac{A+2\mu }{54\mu ^{2}}S_{1}^{3}, $$
(104a)
$$ \mathcal{J}^{\star }_{2}=-\frac{S_{1}^{2}}{12\mu ^{2}}+ \frac{S_{2}}{4\mu ^{2}}-\frac{A}{8\mu ^{4}}S_{3}+ \frac{3A+4\mu }{24\mu ^{4}}S_{1}S_{2}-\frac{A+2\mu }{36\mu ^{4}}S_{1}^{3}, $$
(104b)
$$ p\mathcal{J}^{\star }_{2}=-\frac{S_{1}S_{2}}{12\mu ^{2}}+ \frac{S_{1}^{3}}{36\mu ^{2}}, $$
(104c)
$$ p^{3}=-\frac{S_{1}^{3}}{27}, $$
(104d)

and \(\mathcal{J}^{\star }_{3}\) as in (103c).

Appendix D: Coefficients in (54)

The coefficients \(a_{j}^{(i)}\) (\(i=0,1,2\) and \(j=1,\ldots,6\)) in (54) are given by

$$ a_{1}^{(0)}=\frac{1}{3},\quad a_{2}^{(0)}=\frac{A+2\mu }{36\mu ^{2}}, $$
(105a)
$$ a_{3}^{(0)}=-\frac{A+2m}{12\mu ^{2}},\quad a_{4}^{(0)}= \frac{8\mu ^{2}+6\mu A+3A^{2}}{72\mu ^{4}}, $$
(105b)
$$ a_{5}^{(0)}=- \frac{8\mu ^{3}+\mu ^{2}(60\kappa +4A-12\mu _{1}+18A_{1})+6\mu A(5\kappa -2\mu _{1})+9\kappa A^{2}}{216 \kappa \mu ^{4}}, $$
(105c)
$$ a_{6}^{(0)}= \frac{4\mu ^{3}+\mu ^{2}(2A+26\kappa +9A_{1}-6\mu _{1})+6\mu A(2\kappa -\mu _{1})+3\kappa A^{2}}{324\kappa \mu ^{4}}, $$
(105d)
$$ a_{1}^{(1)}=-\frac{6\kappa +4\mu -6\mu _{1}}{9\kappa }, $$
(105e)
$$ a_{2}^{(1)}=-\frac{2\mu +A+6D}{18\mu ^{2}}+ \frac{8\mu ^{2}-18\mu \mu _{1}+9\mu _{1}^{2}}{54\kappa \mu ^{2}} + \frac{14\mu -18\mu _{1}+9\mu _{2}}{81\kappa ^{2}}+ \frac{\mathcal{E}_{3}(2\mu -3\mu _{1})}{27\kappa ^{3}}, $$
(105f)
$$ a_{3}^{(1)}=\frac{2\mu +A+6D}{6\mu ^{2}}- \frac{8\mu ^{2}-18\mu \mu _{1}+9\mu _{1}^{2}}{18\kappa \mu ^{2}}, $$
(105g)
$$ a_{4}^{(1)}=-\dfrac{A^{2}+A(4\mu +6D)-3\mu A_{1}}{12\mu ^{4}}+ \frac{(2\mu -3\mu _{1})(2\mu A-3A\mu _{1}+3\mu A_{1})}{36\kappa \mu ^{4}}, $$
(105h)
$$\begin{aligned} a_{5}^{(1)}&= \frac{12\mu ^{2}+\mu (16A-9A_{1}+24D)+3A(A+6D)}{36\mu ^{4}} \\ &{}+\displaystyle \frac{4\mu -2A+24D-9A_{1}+9\mu _{1}+9\mu _{2}}{54\kappa \mu ^{2}} \\ &{}+ \frac{\mu \mu _{1}(8A-24D+9A_{1}-12\mu _{1})-9A\mu _{1}^{2}}{36\kappa \mu ^{4}} \\ &{}+\displaystyle \frac{40\mu ^{3}-36\mu ^{2}\mu _{1}+54\mu ^{2}\mu _{2}-63\mu \mu _{1}^{2}-54\mu \mu _{1}\mu _{2}+54\mu _{1}^{3}}{162\kappa ^{2}\mu ^{3}} \\ &{}+ \frac{\mathcal{E}_{3}(4\mu -3\mu _{1})(2\mu -3\mu _{1})}{54\kappa ^{3}\mu ^{2}}, \end{aligned}$$
(105i)
$$\begin{aligned} a_{6}^{(1)}&=- \frac{6\mu ^{2}+\mu (6A-3A_{1}+12D)+A(A+6D)}{54\mu ^{4}} \\ &{}-\displaystyle \frac{4\mu ^{3}+3\mu ^{2}(8D-2A_{1}+3\mu _{1}+3\mu _{2})+3\mu \mu _{1}(2A+3A_{1}-6\mu _{1}-12D)-9A\mu _{1}^{2}}{162\kappa \mu ^{4}} \\ &{} -\displaystyle \frac{44\mu ^{3}-36\mu ^{2}\mu _{1}+54\mu ^{2}\mu _{2}-63\mu \mu _{1}^{2}-54\mu \mu _{1}\mu _{2}+54\mu _{1}^{3}}{486\kappa ^{2}\mu ^{3}} \\ &{} -\displaystyle \frac{64\mu ^{3}+\mu ^{2}(54\mathcal{E}_{3}-18\mathcal{E}_{4}-84\mu _{1}+36\mu _{2})-162\mu \mu _{1}\mathcal{E}_{3}+81\mu _{1}^{2}\mathcal{E}_{3}}{1458\mu ^{2}\kappa ^{3}}, \\ &{}+\displaystyle \frac{\mathcal{E}_{4}(2\mu -3\mu _{1})-\mathcal{E}_{3}(16\mu -21\mu _{1}+9\mu _{2})}{243\kappa ^{4}}- \frac{\mathcal{E}_{3}^{2}(2\mu -3\mu _{1})}{81\kappa ^{5}}, \end{aligned}$$
(105j)
$$ a_{j}^{(2)}=\left (4\kappa +3A_{1}-\frac{2}{3}A\right )k_{j} \quad (j=1,\ldots,6), $$
(105k)

with \(k_{j}\) (\(j=1,\ldots,6\)) as in (47).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saccomandi, G., Vergori, L. Some Remarks on the Weakly Nonlinear Theory of Isotropic Elasticity. J Elast 147, 33–58 (2021). https://doi.org/10.1007/s10659-021-09865-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-021-09865-1

Keywords

Mathematics Subject Classification (2010)

Navigation