Skip to main content
Log in

Some Basis-Free Formulae for the Time Rate and Conjugate Stress of Logarithmic Strain Tensor

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this paper, two kinds of tensor equations are studied and their solutions are derived in general cases. Then, some compact basis-free representations for the time rate and conjugate stress of logarithmic strain tensors are proposed using six different methods. In addition, relations between the coefficients in these expressions are disclosed. Subsequently, all these basis-free expressions given in this paper are validated for the cases of distinct stretches and double coalescence, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hencky, Uber die form des elastizitatsgesetzes bei ideal elastischen soffen. Zh. Tekh. Fiz. 9 (1928) 214–223.

    Google Scholar 

  2. R. Hill, On the constitutive inequalities for simple materials – I. J. Mech. Phys. Solids 16 (1968) 229–242.

    Article  MATH  ADS  Google Scholar 

  3. A. Hoger, The material time derivative of logarithmic strain. Int. J. Solids Struct. 22 (1986) 1019–1032.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Hoger, The stress conjugate to logarithmic strain. Int. J. Solids Struct. 23 (1987) 1645–1656.

    Article  MATH  MathSciNet  Google Scholar 

  5. W.B. Wang and Z.P. Duan, On the invariant representation of spin tensors with applications. Int. J. Solids Struct. 27 (1991) 329–341.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Scheidler, Time rates of generalized strain tensors. Part I: Component formulas. Mech. Mater. 11 (1991) 199–210.

    Article  Google Scholar 

  7. Th. Lehmann and H.Y. Liang, The stress conjugate to the logarithmic strain lnV. Z. Angew. Math. Mech. 73 (1993) 357–363.

    Article  MATH  MathSciNet  Google Scholar 

  8. C.-S. Man and Z.-H. Guo, A basis-free formula for time rate of Hill's strain tensors. Int. J. Solids Struct. 30 (1993) 2819–2842.

    Article  MATH  MathSciNet  Google Scholar 

  9. H. Xiao, Unified explicit basis-free expressions for time rate and conjugate stress of an arbitrary Hill's strain. Int. J. Solids Struct. 32 (1995) 3327–3340.

    Article  MATH  Google Scholar 

  10. H. Xiao, O.T. Bruhns and A.T.M. Meyers, Strain rates and material spins. J. Elast. 52 (1998) 1–41.

    Article  MATH  MathSciNet  Google Scholar 

  11. G.S. Dui, Q.W. Ren and Z.J. Shen, Time rates of Hill's strain tensors. J. Elast. 54 (1999) 129–140.

    Article  MATH  MathSciNet  Google Scholar 

  12. G.S. Dui, Q.W. Ren and Z.J. Shen, Conjugate stresses to Seth's strain class. Mech. Res. Comm. 27 (2000) 539–542.

    Article  MATH  Google Scholar 

  13. Z.P. Bazant, Easy-to-compute tensors with symmetric inverse approximating Hencky finite strain and its rate. J. Eng. Mater. Technol. 120 (1998) 131–136.

    Article  Google Scholar 

  14. Z.-H. Guo, Rates of stretch tensors. J. Elast. 14 (1984) 263–267.

    Article  MATH  Google Scholar 

  15. A. Hoger and D.E. Carlson, Determination of the stretch and rotation in the polar decomposition of the deformation gradient. Quart. Appl. Math. 42 (1984) 113–117.

    MATH  MathSciNet  Google Scholar 

  16. M. Scheidler, The tensor equation AX + XA = ϕ (A, H), with applications to kinematics of continua. J. Elast. 27 (1994) 117–153.

    Article  MathSciNet  Google Scholar 

  17. R.S. Rivlin, Further remarks on the stress-deformation relations for isotropic materials. J. Rat. Mech. Anal. 4 (1955) 681–702.

    MathSciNet  Google Scholar 

  18. G.S. Dui, Some new representations for spin tensors. Mech. Res. Comm. 26 (1999) 1–6.

    Article  MATH  MathSciNet  Google Scholar 

  19. Z.-H Guo, Th. Lehmann, H.Y. Liang, H. and C.-S. Man, Twirl tensors and the tensor equation AXXA = C. J. Elast. 27 (1992) 227–245.

    MATH  MathSciNet  Google Scholar 

  20. M.E. Gurtin and K. Spear, On the relationship between the logarithmic strain rate and the stretching tensor. Int. J. Solids Struct. 19 (1983) 437–444.

    Article  MATH  MathSciNet  Google Scholar 

  21. M.M. Mehrabadi and S. Nemat-Nasser, Some basic kinematics solutions for finite deformations of continua. Mech. Mater. 6 (1987) 127–138.

    Article  Google Scholar 

  22. C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics. Berlin Heidelberg New York: Springer (1992).

    MATH  Google Scholar 

  23. S. Fitzjerald, A tensorial Hencky measure of strain and strain rate for finite deformation. J. Appl. Phys. 51 (1980) 5111–5115.

    Article  ADS  Google Scholar 

  24. Z.-H. Guo and H.Y. Liang, From principal axis representation to abstract representation. Adv. Mech. (in Chinese) 25 (1990) 303–315.

    Google Scholar 

  25. R. Hill, Constitutive inequalities for isotropic elastic solids under finite strain. Proc. R. Soc. A 314 (1970) 457–472.

    Article  MATH  ADS  Google Scholar 

  26. R. Hill, Basic aspects of invariance in solid mechanics. Adv. Appl. Mech., New York 18 (1978) 1–75.

    MATH  Google Scholar 

  27. D.E. Carlson and A. Hoger, The derivative of a tensor-valued function of a tensor. Quart. Appl. Math. 44 (1986) 409–423.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dui, GS. Some Basis-Free Formulae for the Time Rate and Conjugate Stress of Logarithmic Strain Tensor. J Elasticity 83, 113–151 (2006). https://doi.org/10.1007/s10659-005-9039-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-005-9039-8

Mathematics Subject Classifications (2000)

Key words

Navigation