Skip to main content
Log in

Marine Bacillus subtilis as an effective biocontrol agent against Fusarium oxysporum f. sp. ciceris

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The chickpea is one of India's most protein-rich and low-input crops, yet it is plagued by a large number of soil-borne diseases. Fusarium wilt, which is brought on by Fusarium oxysporum f. sp. ciceris (FOC), can happen at any stage, from germination to fruiting, and it can drastically lower productivity. The purpose of this study was to ascertain the marine Bacillus subtilis's ability to serve as a biocontrol agent, and to examine its in vitro and in vivo impact on several vegetative parameters both in the presence and absence of pathogen FOC. Bacillus subtilis showed production of glucanase and effectively inhibited FOC in vitro. Bacillus subtilis was used to prepare a talc-based bio-formulation, and pot trials were conducted under three different conditions: control (T1), FOC treated (T2), and both Bacillus and FOC treated (T3). T3 showed 7.08% increase in plant weight whereas 1.20% increase in plant height in pot trials. Thus, it was able to improve plant growth despite presence of pathogen. Disease index was reduced from 3.2, without B. subtilis to zero in presence of B. subtilis. Additionally, it assisted in boosting several plant defense enzymes. It was also found to increase soil nitrogen, potassium and phosphate concentration as BS 90 is an ammonia producer and potassium and phosphate solubilizer. According to the findings, B. subtilis demonstrated bio-control abilities with inhibitory impact against FOC, protecting chickpea from disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Agrawal, T., & Kotasthane, A. S. (2012). Chitinolytic assay of indigenous trichoderma isolates collected from different geographical locations of Chhattisgarh in Central India. Springerplus, 1(1), 73. https://doi.org/10.1186/2193-1801-1-73

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad, A. G. M., Attia, A. Z. G., Mohamed, M. S., & Elsayed, H. E. (2019). Fermentation, formulation and evaluation of PGPR Bacillus subtilis isolate as a bioagent for reducing occurrence of peanut soil-borne diseases. Journal of Integrative Agriculture, 18(9), 2080–2092. https://doi.org/10.1016/S2095-3119(19)62578-5

    Article  CAS  Google Scholar 

  • Al-Hatmi, A. M. S., Meis, J. F., & de Hoog, G. S. (2016). Fusarium: Molecular Diversity and Intrinsic Drug Resistance. PLoS Pathogens, 12(4), 1–8. https://doi.org/10.1371/journal.ppat.1005464

    Article  CAS  Google Scholar 

  • Alina, S. O., Constantinscu, F., & Petruta, C. C. (2015). Biodiversity of Bacillus subtilis group and beneficial traits of Bacillus species useful in plant protection. Romanian Biotechnological Letters, 20(5), 10737–10750.

    Google Scholar 

  • Badrakia, J., Patel, K. B., Dhandhukia, P., & Thakker, J. N. (2021). Mycoparasitic Pseudomonas spp. against infection of Fusarium chlamydosporum pathogen in soyabean (Glycine max) plant. Archives of Phytopathology and Plant Protection, 54(19–20), 2160–2170. https://doi.org/10.1080/03235408.2021.1925433

    Article  CAS  Google Scholar 

  • Blake, C., Christensen, M. N., & Kovacs, A. T. (2021). Molecular aspects of plant growth promotion and protection by bacillus subtilis. Molecular Plant-Microbe Interactions, 34(1), 15–25. https://doi.org/10.1094/MPMI-08-20-0225-CR

    Article  CAS  PubMed  Google Scholar 

  • Cao, S., Jiang, B., Yang, G., Pan, G., Pan, Y., Chen, F., Gao, Z., & Dai, Y. (2023). Isolation and evaluation of Bacillus subtilis RSS-1 as a potential biocontrol agent against Sclerotinia sclerotiorum on oilseed rape. European Journal of Plant Pathology, 166, 9–25. https://doi.org/10.1007/s10658-023-02642-x

    Article  CAS  Google Scholar 

  • Cheffi Azabou, M., Gharbi, Y., Medhioub, I., Ennouri, K., Barham, H., Tounsi, S., & Triki, M. A. (2020). The endophytic strain Bacillus velezensis OEE1: An efficient biocontrol agent against Verticillium wilt of olive and a potential plant growth promoting bacteria. Biological Control, 142, 104168. https://doi.org/10.1016/j.biocontrol.2019.104168

    Article  CAS  Google Scholar 

  • Chen, K., Tian, Z., He, H., Long, C., & an, & Jiang, F. (2020). Bacillus species as potential biocontrol agents against citrus diseases. Biological Control, 151(August), 104419. https://doi.org/10.1016/j.biocontrol.2020.104419

    Article  CAS  Google Scholar 

  • Chowdhury, S. K., Majumdar, S., & Mandal, V. (2020). Application of Bacillus sp. LBF-01 in Capsicum annuum plant reduces the fungicide use against Fusarium oxysporum. Biocatalysis and Agricultural Biotechnology, 27, 101714. https://doi.org/10.1016/j.bcab.2020.101714

    Article  Google Scholar 

  • Cucu, M. A., Gilardi, G., Pugliese, M., Gullino, M. L., & Garibaldi, A. (2020). An assessment of the modulation of the population dynamics of pathogenic Fusarium oxysporum f. sp. lycopersici in the tomato rhizosphere by means of the application of Bacillus subtilis QST 713, Trichoderma sp. TW2 and two composts. Biological Control, 142, 104158. https://doi.org/10.1016/j.biocontrol.2019.104158

    Article  CAS  Google Scholar 

  • Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2(DEC), 1–13. https://doi.org/10.3389/fenvs.2014.00053

    Article  CAS  Google Scholar 

  • Devi, A. R., Sharma, G. D., Majumdar, P., & Pandey, P. (2018). A multispecies consortium of bacteria having plant growth promotion and antifungal activities, for the management of Fusarium wilt complex disease in potato (Solanum tuberosum L.). Biocatalysis and Agricultural Biotechnology, 16, 614–624. https://doi.org/10.1016/j.bcab.2018.10.003

    Article  Google Scholar 

  • Feling, R. H., Buchanan, G. O., Mincer, T. J., Kauffman, C. A., Jensen, P. R., & Fenical, W. (2003). Salinosporamide A: A Highly Cytotoxic Proteasome Inhibitor from a Novel Microbial Source, a Marine Bacterium of the New Genus Salinospora. Angewandte Chemie., 42(3), 355–357. https://doi.org/10.1002/anie.200390115

    Article  CAS  PubMed  Google Scholar 

  • Friedlander, M., Inbar, J., & Chet, I. (1993). Biological control of soil borne plant pathogens by a β-1, 3 glucanase-producing Pseudomonas cepacia. Soil Biology and Biochemistry, 25(9), 1211–1221. https://doi.org/10.1016/0038-0717(93)90217-Y

    Article  Google Scholar 

  • Goswami, D., Patel, K., Parmar, S., Vaghela, H., Muley, N., Dhandhukia, P., & Thakker, J. N. (2015). Elucidating multifaceted urease producing marine Pseudomonas aeruginosa BG as a cogent PGPR and bio-control agent. Plant Growth Regulation, 75(1), 253–263. https://doi.org/10.1007/s10725-014-9949-1

    Article  CAS  Google Scholar 

  • Goswami, D., Thakker, J. N., & Dhandhukia, P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food and Agriculture, 2(1). https://doi.org/10.1080/23311932.2015.1127500

  • Goswami, D., Dhandhukia, P., Thakker, J.N. (2019). Microbial Enzymes: The types and roles in the biocontrol of fungal phytopathogens (Eds.) S. M. Abdel-Aziz et al., Microbial Catalyst, 223–248. Nova Science Publishers.

  • Hashem, A., Tabassum, B., & Fathi Abd_Allah, E. (2019). Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi Journal of Biological Sciences, 26(6), 1291–1297. https://doi.org/10.1016/j.sjbs.2019.05.004

  • Hassan, S., Sabreena, Khurshid, Z., Bhat, S., Kumar, V., Ameen, F., & Ganai, B. (2022). Marine bacteria and omic approaches: A novel and potential repository for bioremediation assessment. Journal of Applied Microbiology, 133(2299), 2313.

    Google Scholar 

  • Hoffland, E., Jeger, M. J., & van Beusichem, M. L. (2000). Effect of nitrogen supply rate on disease resistance in tomato depends on the pathogen. Plant and Soil, 218(1–2), 239–247.

    Article  CAS  Google Scholar 

  • Indunil Kumari, Y. S. M. A., & Vengadaramana, A. (2017). Stimulation of Defense Enzymes in Tomato (Solanum lycopersicum L.) and Chilli (Capsicum annuum L.) in Response to Exogenous Application of Different Chemical Elicitors. Universal Journal of Plant Science, 5(1), 10–15. https://doi.org/10.13189/ujps.2017.050102

    Article  Google Scholar 

  • Jiménez-Díaz, R. M., Castillo, P., Jiménez-Gasco, MdelM., Landa, B. B., & Navas-Cortés, J. A. (2015). Fusarium wilt of chickpeas: Biology, ecology and management. Crop Protection, 73(16), 27. https://doi.org/10.1016/j.cropro.2015.02.023

    Article  Google Scholar 

  • Ma, T., Yang, C., Cai, F., Cui, L., & Wang, Y. (2022). Optimizing fermentation of Bacillus amyloliquefaciens 3–5 and determining disease suppression and growth in cucumber (Cucumis sativus). Biological Control, 176, 105070. https://doi.org/10.1016/j.biocontrol.2022.105070

    Article  CAS  Google Scholar 

  • Mahaffee, W. F., & Kloepper, J. W. (1997). Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microbial Ecology, 34(3), 210–223. https://doi.org/10.1007/s002489900050

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi, A., Habibi, D., Rohami, M., & Mafakheri, S. (2011). Effect of drought stress on antioxidant enzymes activity of some chickpea cultivars. Journal of Agriculture and Environmental Science, 11(6), 782–785.

    CAS  Google Scholar 

  • Mondol, M., Shin, H., & Islam, M. (2013). Diversity of secondary metabolites from marine Bacillus species: Chemistry and Biological activity. Marine Drugs, 11, 2846–2872.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel, K. B., & Thakker, J. N. (2020). Deliberating plant growth promoting and mineral-weathering proficiency of streptomyces nanhaiensis strain YM4 for nutritional benefit of millet crop (Pennisetum glaucum). Journal of Microbiology, Biotechnology and Food Sciences, 9(4), 721–726. https://doi.org/10.15414/jmbfs.2020.9.4.721-726

    Article  CAS  Google Scholar 

  • Patel, P. P., Patel, K. B., Dhandhukia, P. C., & Thakker, J. N. (2020). Elicitation of Plant Defense Against Fusarium Oxysporum f.sp, ciceris in Chickpea Plant Using Marine Micrococcus Sp. Journal of Microbiology, Biotechnology and Food Sciences, 10(3), 361–365. https://doi.org/10.15414/jmbfs.2020.10.3.361-365

    Article  CAS  Google Scholar 

  • Patel, P., Patel, K., Dhandhukia, P., & Thakker, J. N. (2021). Plant growth promoting traits of marine Micrococcus sp. with bio-control ability against Fusarium in chickpea plant. Vegetos, 34(1), 94–101. https://doi.org/10.1007/s42535-021-00191-4

    Article  Google Scholar 

  • Poveda, J., Calvo, J., Barquero, M., & Andres, F. (2022). Activation of sweet pepper defense responses by novel and known biocontrol agents of the genus Bacillus against Botrytis cinerea and Verticillium dahliae. European Journal of Plant Pathology, 164, 507–524. https://doi.org/10.1007/s10658-022-02575-x

    Article  CAS  Google Scholar 

  • Sahni, S., & Prasad, B. D. (2020). Management of collar rot disease using vermicompost and a PGPR strain Pseudomonas sp. and their effect on defense-related enzymes in chickpea. Indian Phytopathology, 73(2), 301–311. https://doi.org/10.1007/s42360-020-00203-4

    Article  Google Scholar 

  • Saxena, A. K., Kumar, M., Chakdar, H., Anuroopa, N., & Bagyaraj, D. J. (2020). Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology, 128(6), 1583–1594. https://doi.org/10.1111/jam.14506

    Article  CAS  PubMed  Google Scholar 

  • Sontakke, P. L., Dhutraj, D. N., Ambadkar, C. V., & Badgujar, S. L. (2020). Status of Chickpea Wilt caused by Fusarium oxysporum f. sp. ciceri in Marathwada Region of Maharashtra State. International Journal of Current Microbiology and Applied Sciences, 9(7), 2553–2560. https://doi.org/10.20546/ijcmas.2020.907.300

    Article  Google Scholar 

  • Thakker, J. N., Badrakia, J., Patel, K., Makwana, U., Parmar, K., & Dhandhukia, P. (2023). Potential of a marine Pseudomonas aeruginosa strain OG101 to combat Fusarium oxysporum associated wilt in legume crops. Archives of Phytopathology and Plant Protection, 56(4), 284–294. https://doi.org/10.1080/03235408.2023.2183800

    Article  Google Scholar 

  • Ueki, A., Takehara, T., Ishioka, G., Kaku, N., & Ueki, K. (2020). β-1,3-Glucanase production as an anti-fungal enzyme by phylogenetically different strains of the genus Clostridium isolated from anoxic soil that underwent biological disinfestation. Applied Microbiology and Biotechnology, 104(12), 5563–5578. https://doi.org/10.1007/s00253-020-10626-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to P.D. Patel Institute of Applied Sciences and CHARUSAT for providing the lab facilities and financial support. Authors are also thankful to Mr. Umesh Makwana for providing land for field trials. And SICART analysis centre, Vidyanagar for carrying out CHN analysis.

Funding

K. Rathod is thankful to CHARUSAT and SHODH for providing doctorate fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janki N. Thakker.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathod, K., Rana, S., Dhandhukia, P. et al. Marine Bacillus subtilis as an effective biocontrol agent against Fusarium oxysporum f. sp. ciceris. Eur J Plant Pathol 167, 759–770 (2023). https://doi.org/10.1007/s10658-023-02720-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-023-02720-0

Keywords

Navigation