Skip to main content
Log in

Root-specific expression of defensin in transgenic tobacco results in enhanced resistance against Phytophthora parasitica var. nicotianae

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Phytophthora species are soil-borne pathogens that damage plants in both agro- and natural ecosystems. To suppress the devastating pathogen, we generated a root-specific expression system using a specific promoter (pPRP3) conferring elevated expression of the target gene in roots that are very susceptible to soil-borne pathogens. To verify root-specific expression, we compared β-glucuronidase (GUS) expression driven by a constitutive or root-specific promoters in shoots and roots. In histochemical and fluorometric assays, GUS activity was detected in whole tobacco plants when GUS expression was driven by p35S, but was detected only in the roots by pPRP3. We then expressed a pepper defensin (J1–1) gene in tobacco to elucidate its effect on plant resistance. The accumulation of J1–1 was also tissue-specific in transgenic tobacco plants. Finally, transgenic plants carrying GUS or J1–1 genes in combination with p35S or pPRP3 were inoculated with Phytophthora parasitica var. nicotianae and Pythium aphanidermatum. Disease symptoms were significantly suppressed in transgenic plants that accumulated J1–1, regardless of the promoter used. Furthermore, the expression of PR genes was induced in J1–1 transgenic plants, exhibiting much higher levels in p35S-driven J1–1 plants than in pPRP3::J1–1 plants. These results demonstrated that J1–1 transgenic plants were primed for enhanced expression of PR genes, which provided synergistic effects with the defensin for disease resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdallah, N. A., Shah, D., Abbas, D., & Madkour, M. (2010). Stable integration and expression of a plant defensin in tomato confers resistance to fusarium wilt. GM Crops, 1, 344–350.

    Article  PubMed  Google Scholar 

  • Adhikari, B. N., Hamilton, J. P., Zerillo, M. M., Tisserat, N., Lévesque, C. A., & Buell, C. R. (2013). Comparative genomics reveals insight into virulence strategies of plant pathogenic oomycetes. PLoS One, 8, e75072.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Anuradha, T. S., Divya, K., Jami, S. K., & Kirti, P. B. (2008). Transgenic tobacco and peanut plants expressing a mustard defensin show resistance to fungal pathogens. Plant Cell Reports, 27, 1777–1786.

    Article  CAS  Google Scholar 

  • Benfey, P. N., & Chua, N.-H. (1990). The cauliflower mosaic virus 35S promoter: Combinatorial regulation of transcription in plants. Science, 250, 959–966.

    Article  PubMed  CAS  Google Scholar 

  • Benfey, P. N., Ren, L., & Chua, N.-H. (1989). The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue specific expression patterns. The EMBO Journal, 8, 2195–2202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernhardt, C., & Tierney, M. L. (2000). Expression of AtPRP3, a proline-rich structural cell wall protein from Arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formation. Plant Physiology, 122, 705–714.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, H., Nelson, R., & Sherwood, J. (1994). Enhanced recovery of transformants of Agrobacterium tumefaciens after freeze-thaw transformation and drug selection. BioTechniques, 16(664–8), 670.

    Google Scholar 

  • Chen, C., Yadav, P. K., Wang, X., & Liu, Z. (2012). Regulatory role of defensins in inflammatory bowel disease. Open Journal of Immunology, 2, 78–84.

    Article  CAS  Google Scholar 

  • Chen, L., Jiang, B., Wu, C., Sun, S., Hou, W., & Han, T. (2014). GmPRP2 promoter drives root-preferential expression in transgenic Arabidopsis and soybean hairy roots. BMC Plant Biology, 14, 1–13.

    Article  Google Scholar 

  • Cornejo, M.-J., Luth, D., Blankenship, K. M., Anderson, O. D., & Blechl, A. E. (1993). Activity of a maize ubiquitin promoter in transgenic rice. Plant Molecular Biology, 23, 567–581.

    Article  PubMed  CAS  Google Scholar 

  • Cornet, B., Bonmatin, J.-M., Hetru, C., Hoffmann, J. A., Ptak, M., & Vovelle, F. (1995). Refined three-dimensional solution structure of insect defensin A. Structure, 3, 435–448.

    Article  PubMed  CAS  Google Scholar 

  • De Block, M., Botterman, J., Vandewiele, M., Dockx, J., Thoen, C., Gosselé, V., et al. (1987). Engineering herbicide resistance in plants by expression of a detoxifying enzyme. The EMBO Journal, 6, 2513–2518.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Coninck, B., Cammue, B. P. A., & Thevissen, K. (2013). Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. Fungal Biology Reviews, 26, 109–120.

    Article  Google Scholar 

  • De Smet, K., & Contreras, R. (2005). Human antimicrobial peptides: Defensins, cathelicidins and histatins. Biotechnology Letters, 27, 1337–1347.

    Article  PubMed  CAS  Google Scholar 

  • Elfstrand, M., Fossdal, C. G., Swedjemark, G., Clapham, D., Olsson, O., Sitbon, F., et al. (2001). Identification of candidate genes for use in molecular breeding-a case study with the Norway spruce defensin-like gene, Spi 1. Silvae Genetica, 50, 75–81.

    Google Scholar 

  • Gao, A. G., Hakimi, S. M., Mittanck, C. A., Wu, Y., Woerner, B. M., Stark, D. M., et al. (2000). Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature Biotechnology, 18, 1307–1310.

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.

    Article  PubMed  CAS  Google Scholar 

  • Hase, S., Takahashi, S., Takenaka, S., Nakaho, K., Arie, T., Seo, S., et al. (2008). Involvement of jasmonic acid signalling in bacterial wilt disease resistance induced by biocontrol agent Pythium oligandrum in tomato. Plant Pathology, 57, 870–876.

    Article  CAS  Google Scholar 

  • Jefferson, R. A. (1987). Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molecular Biology Reporter, 5, 387–405.

    Article  CAS  Google Scholar 

  • Jefferson, R. A., Kavanagh, T. A., & Bevan, M. W. (1987). GUS fusions: Beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal, 6, 3901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanzaki, H., Nirasawa, S., Saitoh, H., Ito, M., Nishihara, M., Terauchi, R., et al. (2002). Overexpression of the wasabi defensin gene confers enhanced resistance to blast fungus (Magnaporthe grisea) in transgenic rice. Theoretical and Applied Genetics, 105, 809–814.

    Article  PubMed  CAS  Google Scholar 

  • Lacerda, A. F., Vasconcelos, E. A., Pelegrini, P. B., & Grossi de Sa, M. F. (2014). Antifungal defensins and their role in plant defense. Frontiers in Microbiology, 5, 116.

  • Lai, F.-M., DeLong, C., Mei, K., Wignes, T., & Fobert, P. R. (2002). Analysis of the DRR230 family of pea defensins: Gene expression pattern and evidence of broad host-range antifungal activity. Plant Science, 163, 855–864.

    Article  CAS  Google Scholar 

  • Meyer, B., Houlne, G., Pozueta-Romero, J., Schantz, M.-L., & Schantz, R. (1996). Fruit-specific expression of a defensin-type gene family in bell pepper. Upregulation during ripening and upon wounding. Plant Physiology, 112, 615–622.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park, H. C., Kang, Y. H., Chun, H. J., Koo, J. C., Cheong, Y. H., Kim, C. Y., et al. (2002). Characterization of a stamen-specific cDNA encoding a novel plant defensin in Chinese cabbage. Plant Molecular Biology, 50, 57–68.

    Article  Google Scholar 

  • Rostás, M., Simon, M., & Hilker, M. (2003). Ecological cross-effects of induced plant responses towards herbivores and phytopathogenic fungi. Basic and Applied Ecology, 4, 43–62.

    Article  Google Scholar 

  • Seo, H.-H., Park, S., Park, S., Oh, B. J., Back, K. W., Han, O. S., et al. (2014). Overexpression of a defensin enhances resistance to a fruit-specific anthracnose fungus in pepper. PLoS One, 9, e97936.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Škalamera, D., Wasson, A. P., & Hardham, A. R. (2004). Genes expressed in zoospores of Phytophthora nicotianae. Molecular Genetics, 270, 549–557.

    Google Scholar 

  • Svyatyna, K., & Riemann, M. (2012). Light-dependent regulation of the jasmonate pathway. Protoplasma, 249, 137–145.

    Article  CAS  Google Scholar 

  • Thomma, B. P., Cammue, B. P., & Thevissen, K. (2002). Plant defensins. Planta, 216, 193–202.

    Article  PubMed  CAS  Google Scholar 

  • Vain, P., Worland, B., Kohli, A., Snape, J. W., Christou, P., Allen, G. C., & Thompson, W. F. (1999). Matrix attachment regions increase transgene expression levels and stability in transgenic rice plants and their progeny. The Plant Journal, 18, 233–242.

    Article  CAS  Google Scholar 

  • Wang, Y., Nowak, G., Culley, D., Hadwiger, L. A., & Fristensky, B. (1999). Constitutive expression of pea defense gene DRR206 confers resistance to blackleg (Leptosphaeria maculans) disease in transgenic canola (Brassica napus). Molecular Plant-Microbe Interactions, 12, 410–418.

    Article  CAS  Google Scholar 

  • Zhou, T., & Paulitz, T. C. (1993). In vitro and in vivo effects of Pseudomonas spp. on Pythium aphanidermatum: Zoospore behavior in exudates and on the rhizoplane of bacteria-treated cucumber roots. Phytopathology, 83, 872–876.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant No. NRF-2014R1A1A2007413 to Y.S. Kim), and the Next-Generation BioGreen 21 Program, Rural Development Administration, Republic of Korea (Grant No. PJ01332701 to J.-I. Kim).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Soon Kim.

Ethics declarations

This article complies with the EJPP Ethical Standards.

Conflict of interest

The authors declare no conflict of interests

Electronic supplementary material

ESM 1

(PDF 78.7 kb)

ESM 2

(PDF 145 kb)

ESM 3

(PDF 148 kb)

ESM 4

(PDF 142 kb)

ESM 5

(PDF 155 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HH., Kim, JS., Hoang, Q.T.N. et al. Root-specific expression of defensin in transgenic tobacco results in enhanced resistance against Phytophthora parasitica var. nicotianae. Eur J Plant Pathol 151, 811–823 (2018). https://doi.org/10.1007/s10658-018-1419-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1419-6

Keywords

Navigation