Skip to main content
Log in

Apple cultivar Regia possessing both Rvi2 and Rvi4 resistance genes is the source of a new race of Venturia inaequalis

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The apple cultivar Regia, bred in Dresden-Pillnitz, Germany, is one of the few cultivars originating from a different scab (Venturia inaequalis) resistance background than Malus floribunda 821, the source of Rvi6. Cv. Regia is a descendant of Russian apple R12740-7A and has been proved to contain the two scab resistance genes Rvi2 and Rvi4. The cultivar itself has been grown in Dresden-Pillnitz since the early 1970s, while seedling populations derived from cv. Regia have been raised in fungicide-free plots since at least 1982. In 2011, small scab lesions were found for the first time on leaves of cv. Regia trees in an experimental unsprayed orchard in Dresden-Pillnitz. Single spore isolate Regia2 (R2) was cultured from these scab lesions and propagated, and then inoculated on scions of the VINQUEST scab differential host set comprising host (0) to host (15), host (17) and cv. Regia, grafted on rootstock M9, in a greenhouse. Strong sporulation was observed on hosts (0), (1), (2), (8), (9), (10) and cv. Regia, and weak sporulation on hosts (3), (4), (13) and (17), suggesting that the new isolate possesses the respective virulences. The implications of these results are discussed in relation to the natural infection of the differential hosts in the orchard and the artificial inoculation of the grafted differential hosts with inoculum gained from in vitro culture of R2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Baumgartner, I. O., Patocchi, A., Frey, J. E., Peil, A., & Kellerhals, M. (2015). Breeding elite lines of apple carrying pyramided homozygous resistance genes against apple scab and resistance against powdery mildew and fire blight. Plant Molecular Biology Reporter, 33, 1573–1583.

    Article  CAS  Google Scholar 

  • Bus, V. G. M., Rikkerink, E. H. A., van de Weg, W. E., Rusholme, R. L., Gardiner, S. E., Bassett, H. C. M., et al. (2005). The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740-7A map to the same linkage group of apple. Molecular Breeding, 15, 103–116.

    Article  CAS  Google Scholar 

  • Bus, V. G. M., Rikkerink, E. H. A., Caffier, V., Durel, C. E., & Plummers, K. M. (2011). Revision of nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Annual Review of Phytopathology, 49, 391–413.

    Article  CAS  PubMed  Google Scholar 

  • Caffier, V., Patocchi, A., Expert, P., Bellanger, M. N., Durel, C. E., Hilber-Bodmer, M., et al. (2015). Virulence characterization of Venturia inaequlis reference isolates on the differential set of Malus hosts. Plant Disease, 99, 370–375.

    Article  Google Scholar 

  • Chapman, K. S., Sundin, G. W., & Beckerman, J. L. (2011). Identification of resistance to multiple fungicides in field populations of Venturia inaequalis. Plant Disease, 95, 921–926.

    Article  CAS  Google Scholar 

  • Charpentier, E., & Marraffini, L. A. (2014). Harnessing CRISPR-Cas9 immunity for genetic engineering. Current Opinion in Microbiology, 19, 114–119.

    Article  CAS  PubMed  Google Scholar 

  • Chevalier, M., Lespinasse, Y., & Renaudin, S. (1991). A microscopic study of the different classes of symptoms coded by the Vf gene in apple for resistance to scab (Venturia inaequalis). Plant Pathology, 40, 249–256.

    Article  Google Scholar 

  • Dayton, D. F., Shay, J. R., & Hough, L. F. (1953). Apple scab resistance from R12740-7a, a russian apple. Proceedings of the American Society for Horticultural Science, 62, 334–340.

    Google Scholar 

  • Didelot, F., Caffier, V., Orain, G., Lemarquand, A., & Parisi, L. (2016). Sustainable management of scab control through the integration of apple resistant cultivars in a low-fungicide input system. Agriculture Ecosystems & Environment, 217, 41–48.

    Article  Google Scholar 

  • Fischer, C. (2002). Stabile Schorfresistenz mit der neuen Pilnitzer Re-Sorte Regia®. Obstbau, 2002, 290–293.

  • Hough, L. F., Shay, J. R., & Dayton, D. F. (1953). Apple scab resistance from Malus floribunda Sieb. Proceedings of the American Society for Horticultural Science, 62, 341–347.

    Google Scholar 

  • Kellerhals, M., Patocchi, A., Duffy, B., & Frey, J. (2008). Modern approaches for breeding high quality apples with durable resistance to scab, powdery mildew and fire blight. In W. F. Ö. O. e.V. (Ed.), 13th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing, Weinsberg, 2008 (pp. 226–231).

  • Lateur, M., & Populer, C. (1994). Screening fruit tree genetic resources in Belgium for disease resistance and other desirable characters. Euphytica, 77, 147–153.

    Article  Google Scholar 

  • Lemaire, C., De Gracia, M., Leroy, T., Michalecka, M., Lindhard-Pedersen, H., Guerin, F., et al. (2016). Emergence of new virulent populations of apple scab from nonagricultural disease reservoirs. New Phytologist, 209, 1220–1229.

    Article  CAS  PubMed  Google Scholar 

  • MacHardy, W. E., Gadoury, D. M., & Gessler, C. (2001). Parasitic and biological fitness of Venturia inaequalis: relationship to disease management strategies. Plant Disease, 85, 1036–1051.

    Article  Google Scholar 

  • Martinez-Bilbao, A., Ortiz-Barredo, A., Montesinos, E., & Murillo, J. (2012). Venturia inaequalis resistance in local Spanish cider apple germplasm under controlled and field conditions. Euphytica, 188, 273–283.

    Article  Google Scholar 

  • Mondino, P., Casanova, L., Celio, A., Bentancur, O., Leoni, C., & Alaniz, S. (2015). Sensitivity of Venturia inaequalis to trifloxystrobin and difenoconazole in Uruguay. Journal of Phytopathology, 163, 1–10.

    Article  CAS  Google Scholar 

  • Parisi, L., Lespinasse, Y., Guillaumes, J., & Kruger, J. (1993). A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathology, 83, 533–537.

    Article  Google Scholar 

  • Parisi, L., Fouillet, V., Schouten, H. J., Groenwold, R., Laurens, F., Didelot, F., et al. (2004). Variability of the pathogenicity of Venturia inaequalis in Europe. Acta Horticulturae, 663, 107–114.

    Article  Google Scholar 

  • Parker, D. M., Hilber, U. W., Bodmer, M., Smith, F. D., Yao, C., & Koller, W. (1995). Production and transformation of conidia of Venturia inaequalis. Phytopathology, 85, 87–91.

    Article  Google Scholar 

  • Peil, A., Dunemann, F., Richter, K., Höfer, M., Király, I., Flachowsky, H., et al. (2008). Resistance breeding in apple at Dresden-Pillnitz. In F. Ö. O. e. V. Weinsberg (Ed.), 13th International Conference on Cultivation Technique and Phytopathological Problems in Organic Fruit-Growing, Weinsberg, 2008 (pp. 220–225).

  • Peil, A., Kellerhals, M., Höfer, M., & Flachowsky, H. (2011). Apple breeding – from the origin to genetic engineering. Fruit, Vegetable and Cereal Science and Biotechnology, 5(Special Issue 1), 118–138.

    Google Scholar 

  • Peil, A., Kellerhals, M., Rueß, F., Baab, G., & Mayr, U. (2014). Schorfresistente Sorten: Nach wie vor ein wichtiger Baustein zur nachhaltigen Obstproduktion. Obstbau, 2014, 131–133.

    Google Scholar 

  • Shay, J. R., & Williams, E. B. (1956). Identification of three physiologic races of Venturia inaequalis. Phytopathology, 46, 190–193.

    Google Scholar 

  • Villani, S. M., Biggs, A. R., Cooley, D. R., Raes, J. J., & Cox, K. D. (2015). Prevalence of myclobutanil resistance and difenoconazole insensitivity in populations of Venturia inaequalis. Plant Disease, 99, 1526–1536.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge C. Grafe, I. Polster and G. Schulz for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Peil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The manuscript was prepared under compliance with ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peil, A., Patocchi, A., Hanke, MV. et al. Apple cultivar Regia possessing both Rvi2 and Rvi4 resistance genes is the source of a new race of Venturia inaequalis . Eur J Plant Pathol 151, 533–539 (2018). https://doi.org/10.1007/s10658-017-1383-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1383-6

Keywords

Navigation