Skip to main content
Log in

Evaluation of the antagonistic potential of Bacillus strains against Pectobacterium carotovorum subsp. carotovorum and their role in the induction of resistance to potato soft rot infection

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

In the present study, a collection of 235 Bacillus strains, which had been isolated from the potato rhizosphere, was screened with the aim of controlling Pectobacterium carotovorum subsp. carotovorum (Pcc), a dominant potato pathogen known for causing soft rot in Iran. Fifteen strains inhibited the known Pcc strains in vitro and these were chosen for further studies. The maceration capacity of Pcc strains was decreased by the antagonistic strains in the range of 1.6–4 times. Based on 16S rRNA sequencing, five Bacillus species were characterized. Conducting various supplementary tests, the current work evaluated all antagonistic strains for biosurfactant production, mobility, enzymatic activities, production and inactivation of acyl-homoserine lactones, and the ability to produce auxin. Among the five antimicrobial peptide biosynthetic genes tested, bmyB was the less frequent gene, while three genes, namely srfAA, fenD, and ituC, were the most distributed genes. In addition, the interaction of four promising Bacillus species in the potato-Pcc system was studied. Along with its discussion of the potency for the biocontrol of Pcc by B. pumilus IrB8 and B. amyloliquefaciens IrB12, the present study’s test results also indicated these two suppressed tuber maceration by 63.7 and 47.8% respectively. The high levels of phenylalanine ammonia-lyase, polyphenol oxidase, peroxidase and total phenols were obtained in a single application of IrB8 or IrB12 after 8 h. In addition, the discontinuous usage of Bacillus and Pcc strains was achieved in comparison to other treatments. Consequently, the current work’s findings show that IrB8 and IrB12 strains have the potential to be used for potato soft rot control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aremu, B. R., & Babalola, O. O. (2015). Classification and taxonomy of vegetable macergens. Frontiers in Microbiology, 6, 1361. https://doi.org/10.3389/fmicb.2015.01361.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arrebola, E., Jacobs, R., & Korsten, L. (2010). Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 108, 386–395.

    Article  CAS  PubMed  Google Scholar 

  • Baghaee-Ravari, S., Gerayeli, N. (2016). Detection of Pectobacterium carotovorum subsp. carotovorum associated with bacterial soft rot of two succulent plants using recA and pmrA in Iran. Journal of Plant Pathology, 97, 143–148.

  • Baghaee-Ravari, S., & Heidarzadeh, N. (2014). Isolation and characterization of rhizosphere auxin producing Bacilli and evaluation of their potency on wheat growth improvement. Archives of Agronomy and Soil Science, 60, 895–905.

    Article  CAS  Google Scholar 

  • Baghaee-Ravari, S., Rahimian, H., Shams-bakhsh, M., Lopez-Solanilla, E., Antunez-Lamas, M., & Rhodrigeuz- Palenzuela, P. (2011). Characterization of Pectobacterium species from Iran using biochemical and molecular methods. European Journal of Plant Pathology, 129,413–129,425.

  • Baghaee-Ravari, S., Moslemkhani, K., & Khodaygan, P. (2013). Assessment of genetic variability of prevalent pectinolytic bacteria causing potato tuber rot in east of Iran. Journal of Plant Pathology, 95, 107–113.

    Google Scholar 

  • Baz, M., Lahbabi, D., Samri, S., Val, F., Hamelin, G., Madore, I., et al. (2012). Control of potato soft rot caused by Pectobacterium carotovorum and Pectobacterium atrosepticum by Moroccan actinobacteria isolates. World Journal of Microbiology and Biotechnology, 28, 303–311.

    Article  CAS  PubMed  Google Scholar 

  • Cahill, D.M., -McComb, J.A. (1992). A comparison of changes in phenylalanine ammonia-lyase activity, lignin and phenolic synthesis in the roots of Eucalyptus calophylla (field resistant) and E. marginata (susceptible) when infected with Volksch Phytophthora cinnamoni. Physiological and Molecular Plant Pathology, 40, 315–332.

    Article  CAS  Google Scholar 

  • Charkowski, A. O. (2015). Biology and control of Pectobacterium in potato. American Journal of Potato Research, 92, 223–229.

    Article  Google Scholar 

  • Choudhary, D. K., & Johri, B. N. (2009). Interactionsof Bacillus spp. and plants with special reference to induced systemic resistance (ISR). Microbiological Reasearch, 164, 493–513.

    Article  CAS  Google Scholar 

  • Chung, S., Kong, H., Buye, r. J. S., Lakshman, D. K., Lydon, J., Kim, S. D., & Roberts, D. P. (2008). Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Applied Microbiology and Biotechnology, 80, 115–123.

    Article  CAS  PubMed  Google Scholar 

  • Chung, Y. S., Holmquist, K., Spooner, D. M., & Jansky, S. H. (2011). A test of taxonomic and biogeographic predictivity: resistance to soft rot in wild relatives of cultivated potato. Phytopathology, 101, 205–212.

    Article  PubMed  Google Scholar 

  • Chung, Y. S., Goeser, N. J., Cai, X. K., & Jansky, S. (2013). The effect of long term storage on bacterial soft rot resistance in potato. American Journal of Potato Research, 90, 351–356.

    Article  Google Scholar 

  • Czajkowski, R., Grabe, G., van DerWolf, J.M. (2009). Distribution of Dickeya spp. and Pectobacterium carotovorum subsp. carotovorum in tubers of naturally infected seed potatoes. European Journal of Plant Pathology, 125, 263–275

  • Czajkowski, R., Boer, W. J., de van Veen, J. A., & van der Wolf, J. M. (2011). Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review: control of Dickeya and Pectobacterium species in potato. Plant Pathology, 60, 999–1013.

    Article  Google Scholar 

  • Czajkowski, R., Boer, W. J., van Veen, J. A., & van der Wolf, J. M. (2012). Characterization of bacterial strains from rotting potato tuber tissue showing antagonism to Dickeya sp. biovar 3 in vitro and in planta. Plant Pathology, 61, 169–182.

    Article  CAS  Google Scholar 

  • De Boer, S. H. (2002). Relative incidence of Erwinia carotovora subsp. atroseptica in stolon end and peridermal tissue of potato tubers in Canada. Plant Disease, 86, 960–964.

    Article  Google Scholar 

  • Douches, D. S., Maas, D., Jastrzebski, K., & Chase, R. W. (1996). Assessment of potato breeding progress in the USA over the last century. Crop Science, 36, 1544–1552.

    Article  Google Scholar 

  • des Essarts, R., Y., Cigna, J., Quêtu-Laurent, A., Caron, A., Munier, E., Beury-Cirou, A., Hélias, V., & Faure, D. (2016). Biocontrol of the potato blackleg and soft rot diseases caused by Dickeya dianthicola. Applied and Environmental Microbiology, 82, 268–278.

  • Faure, D., & Dessaux, Y. (2007). Quorum sensing as a target for developing control strategies for the plant pathogen Pectobacterium. European Journal of Plant Pathology, 119, 353–365.

    Article  CAS  Google Scholar 

  • Hussain, M. B. B. M., Zhang, H. B., Xu, J. L., Liu, Q., Jiang, Z., & Zhang, L. H. (2008). The acyl-homoserine lactone-type quorum sensing system modulates cell motility and virulence of Erwinia chrysanthemi pv. zeae. Journal of Bacteriology, 190, 1045–1053.

    Article  CAS  PubMed  Google Scholar 

  • Idris, E. E., Iglesias, D. J., Talon, M., & Borriss, R. (2007). Tryptophan-dependent production of indole-3-acetic Acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-Microbe Interactions, 20, 619–626.

    Article  CAS  PubMed  Google Scholar 

  • Jafra, S., & van der Wolf, J. M. (2004). Fast screening method for detection of acyl-HSL-degrading soil isolates. Journal of Microbiological Methods, 57, 415–420.

    Article  CAS  PubMed  Google Scholar 

  • Jafra, S., Przysowa, J., Czajkowski, R., Michta, A., Garbeva, P., & van der Wolf, J. M. (2006). Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. Canadian Journal of Microbiology, 52, 1006–1015.

    Article  CAS  PubMed  Google Scholar 

  • Jayasankar, N. P., & Graham, P. H. (1970). An agar plate method for screening and enumerating pectinolytic microorganisms. Canadian Journal of Microbiology, 16, 1023.

    Article  CAS  PubMed  Google Scholar 

  • Jockusch, H. (1966). The role of host genes, temperature and polyphenol oxidase in the necrotization of TMV infected tobacco tissue. Phytopathology, 55, 185–192.

    Article  Google Scholar 

  • Johnsen, H. R., & Krause, K. (2014). Cellulase activity screening using pure carboxymethylcellulose: application to soluble cellulolytic samples and to plant tissue prints. International Journal of Molecular Sciences, 15, 830–838.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kastelein, P., Schepel, E., Mulder, A., Turkensteen, L., & Van Vuurde, J. (1999). Preliminary selection of antagonists of Erwinia carotovora subsp. atroseptica (Van Hall) Dye for application during green crop lifting of seed potato tubers. Potato Research, 42, 161–171.

    Article  Google Scholar 

  • Kloepper, J. W. (1983). Effect of seed piece inoculation with plant growth promoting rhizobacteria on populations of Erwnia carotovora on potato roots and in daughter tubers. Phytopathology, 73, 217–219.

    Article  Google Scholar 

  • Krzyzanowska, D. M., Potrykus, M., Golanowska, M., Polonis, K., Gwizdek-Wisniewska, A., Lojkowska, E., & Jafra, S. (2012). Rhizosphere bacteria as potential biocontrol agents against soft rot caused by various Pectobacterium and Dickeya spp. strains. Journal of Plant Pathology, 94, 367–378.

    Google Scholar 

  • Lee, J.H., Shin, H., Ji, S., Malhotra, S., Kumar, M., Ryu, S., et al. 2012.Complete genome sequence of phytopathogenic Pectobacterium carotovorum subsp. carotovorum bacteriophage PP1. Journal of Virology, 86. 8899–8990.

  • Li, S. B., Mao, F., Ren-Chao, Z., & Juan, J. (2012). Characterization and evaluation of the endophyte Bacillus B014 as a potential biocontrol agent for the control of Xanthomonas axonopodis pv. dieffenbachiae induced blight of Anthurium. Biological Control, 63, 9–16.

    Article  CAS  Google Scholar 

  • Liu, B., Huang, L., Buchenauer, H., & Kang, Z. (2010). Isolation and paetial characterization of an antifungal protein from the endophytic Bacillus subtilis strain EDR4. Pesticide Biochemistry and Physiology, 98, 305–311.

    Article  CAS  Google Scholar 

  • Logan, N. A. and De Vos, P. (2009). Genus I.Bacillus. In P. De Vos, G. M Garrity, D. Jones, N. R. Krieg,W. Ludwig, F. A Rainey, K.-H Schleifer   W. B Whitman (Eds.), In Bergey’s Manual of Systematic Bacteriology 3, 21–128. New York:Springer.

  • Lojkowska, E., & Holubowska, M. (1992). The role of polyphenol oxidase and peroxidase in potato tuber resistance to soft rot caused by Erwinia carotovora. Journal of Phytopathology, 136, 319–328.

    Article  CAS  Google Scholar 

  • Lovrekovich, L., Lovrekovich, H., & Stahmann, M. A. (1967). Inhibition of phenol oxidation by Erwinia carotovora in potato tuber tissue and its significance in disease resistance. Phytopathology, 57, 737–742.

    CAS  PubMed  Google Scholar 

  • Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G., & Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Parthology, 6, 614–629.

    Article  Google Scholar 

  • Marquez-Villavincencio, M., Weber, B., Witherell, R. A., Willis, D. K., & Charkowski, A. O. (2011). The 3-hydroxy-2-butanone pathway is required for Pectobacterium carotovorum pathogenesis. PLoS One, 6, e22974.

    Article  Google Scholar 

  • Montesinos, E. (2007). Antimicrobial peptides and plant disease control. FEMS Microbiological Letters, 270, 1–11.

    Article  CAS  Google Scholar 

  • Mora, I., Cabrefiga, J., & Montesinos, E. (2011). Antimicrobial peptide genes in Bacillus strains from plant environments. International Microbiology, 14, 213–223.

    CAS  PubMed  Google Scholar 

  • Morikawa, M., Hirata, Y., & Imanaka, T. (2000). A Study on the structure-function relationship of lipopeptides biosurfactants. Biochimica et Biophysica Acta, 1488, 211–218.

    Article  CAS  PubMed  Google Scholar 

  • Ngadze, E., Icishahayo, D., Coutinho, T. A., & van der Waals, J. E. (2012). Role of polyphenol oxidase, peroxidase, phenylalanine ammonia lyase, chlorogenic acid, and total soluble phenols in resistance of potatoes to soft rot. Plant Disease, 96, 186–192.

    Article  CAS  Google Scholar 

  • Okey, E. N., Duncan, E. J., Sirju-charran, G., & Sreenivasan, T. N. (1997). Phytopthora canker resistance in cacao: role of peroxidase, polyphenol oxidase and phenylalanine ammonia lyase. Journal of Phytopathology, 145, 295–299.

    Article  CAS  Google Scholar 

  • Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16, 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L., & Thonart, P. (2007). Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environmental Microbiology, 9, 1084–1090.

    Article  CAS  PubMed  Google Scholar 

  • Palacio-Bielsa, A., Mosquera, M. E. R., Álvarez, M. A. C., Rodríguez, I. M. B., López-Solanilla, E., & Rodríguez-Palenzuela, P. (2010). Phenotypic diversity, host range and molecular phylogeny of Dickeya isolates from Spain. European Journal of Plant Pathology, 127, 311–324.

    Article  Google Scholar 

  • Patten, C. L., & Glick, B. R. (2002). Role of Pseudomonas putida Indoleacetic acid in development of the host plant root system. Applied and Environmental Microbiology, 68, 3795–3801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira, L. F., Goodwin, P. H., & Erickson, L. (1999). The role of phenylalanine ammonia lyase gene expression during cassava bacterial blight and cassava bacterial necrosis. Journal of Plant Reasearch, 111, 51–60.

    Article  Google Scholar 

  • Perombelon, M., & Lowe, R. (1975). Studies on the initiation of bacterial soft rot in potato tubers. Potato Research, 18, 64–82.

    Article  Google Scholar 

  • Pitman, A. R., Harrow, S. A., & Visnovsky, S. B. (2010). Genetic characterisation of Pectobacterium wasabiae causing soft rot disease of potato in New Zealand. European Journal of Plant Pathology, 126, 423–435.

    Article  Google Scholar 

  • Raaijmakers, J. M., De Bruijn, I., Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiology Review, 34, 1037–1062.

    Article  CAS  Google Scholar 

  • Ray, H., Douches, D. S., & Hammerschmidt, R. (1998). Transformation of potato with cucumber peroxidase: Expression and disease response. Physiological and Molecular Plant Pathology, 53, 93–103.

    Article  CAS  Google Scholar 

  • Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M., & Perez-Garcia, A. (2007). The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions, 20, 430–440.

    Article  CAS  PubMed  Google Scholar 

  • Santoyo, G., Del Carmen Orozco-Mosqueda, M., & Govindappa, M. (2012). Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas. Biocontrol Science and Technology, 22, 855–872.

    Article  Google Scholar 

  • Sharma, R. R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biological Control, 50, 205–221.

    Article  Google Scholar 

  • Shu-Bin, L., Mao, F., Ren-Chao, Z., Juan, H., & Xiao, L. (2012). Characterization and evaluation of the endophyte Bacillus B014 as a potential biocontrol agent for the control of Xanthomonas axonopodis pv. dieffenbachiae induced blight of Anthurium. Biological Control, 63, 9–16.

    Article  Google Scholar 

  • Soylu, E. M., Soylu, S., & Baysal, O. (2003). Induced of disease resistance and antioxidant enzymes by acibenzolar-S-methyl against bacterial canker (Clavibacter michiganensis subsp. michiganensis) in tomato. Journal of Plant Pathology, 85, 175–181.

    CAS  Google Scholar 

  • Spaepen, S., & Vanderleyden, J. (2011). Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology, 3, a001438.

    Article  PubMed  PubMed Central  Google Scholar 

  • Talboys, P. J., Owen, D. W., Healey, J. R., Withers, P. J. A., & Jones, D. L. (2014). Auxin secretion byBacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivium. BMC Plant Biology, 14, 51. https://doi.org/10.1186/1471-2229-14-51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Toth, I. K., Sullivan, L., Brierley, J. L., Avrova, A. O., Hyman, L. J., Holeva, M., Broadfoot, L., Pérombelon, M. C. M., & McNicol, J. (2003). Relationship between potato seed tuber contamination by Erwinia carotovora ssp. atroseptica, blackleg disease development and progeny tuber contamination. Plant Pathology, 52, 119–126.

    Article  Google Scholar 

  • Tran, H., Ficke, A., Asiimwe, T., Hofte, M., & Raaijmakers, J. M. (2007). Role of the cyclic lipopeptide mjmakerassetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytologist, 175, 731–742.

    Article  CAS  PubMed  Google Scholar 

  • Trias, R., Baneras, L., Montesinos, E., & Badosa, E. (2008). Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. International Microbiology, 11, 231–236.

    CAS  PubMed  Google Scholar 

  • Van der Merwe, J. J., Coutinho, T. A., Korsten, L., & van der Waals, J. E. (2010). Pectobacterium carotovorum subsp.brasiliensis causing blackleg on potatoes in South Africa. European Journal of Plant Pathology, 126, 175–185.

    Article  Google Scholar 

  • Waleron, M., Waleron, K., & Lojkowska, E. (2014). Characterization of Pectobacterium carotovorum subsp. odoriferum causing soft rot of stored vegetables. European Journal of Plant Pathology, 139, 457–469.

    Article  Google Scholar 

  • Wang, X., Wang, L., Wang, J., Jin, P., Liu, H., et al. (2014). Bacillus cereus AR156-induced resistance to Colletotrichum acutatum is associated with priming of defense responses in loquat fruit. PLoS One, 9(11), e112494.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wegener, C. B. (2002). Induction of defense responses against Erwinia soft rot by an endogenous pectate lyase in potatoes. Physiological and Molecular Plant Pathology, 60, 91–100.

    Article  CAS  Google Scholar 

  • Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller, D. M. (1988). Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 26, 379–407.

    Article  Google Scholar 

  • Wu, L., Wu, H., Chen, L., Yu, X., Borriss, R., & Gao, X. (2015). Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Scientific Reports, 5, 12975. https://doi.org/10.1038/ srep12975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, S., Zhang, F., & Hua, B. (2008). Enhancement of PAL, PPO and POD in cucumber seedlings by Bemisa tabaci (Gennadius) (Hemiptera: Aleyrodidae) infestation. Agricultural Sciences in China, 7, 82–87.

    Article  CAS  Google Scholar 

  • Zhao, Y., Li, P., Huang, K., Wang, Y., Hu, H., & Sun, Y. (2013). Control of postharvest soft rot caused by Erwinia carotovora of vegetables by a strain of Bacillus amyloliquefaciens and its potential modes of action. World Journal of Microbiology and Biotechnology, 29, 411–420.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Ferdowsi University of Mashhad, Iran under grant number 33304. We thank Dr. Jan. van der Wolf from Plant Research International, Wageningen, The Netherlands, for providing control strains in enzymatic assays and all requirements for AHL signal molecules experiments.

Funding

This study was funded by Ferdowsi University of Mashhad, Iran under grant number 33304.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sareh Baghaee-Ravari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerayeli, N., Baghaee-Ravari, S. & Tarighi, S. Evaluation of the antagonistic potential of Bacillus strains against Pectobacterium carotovorum subsp. carotovorum and their role in the induction of resistance to potato soft rot infection. Eur J Plant Pathol 150, 1049–1063 (2018). https://doi.org/10.1007/s10658-017-1344-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1344-0

Keywords

Navigation