Skip to main content
Log in

Races of Magnaporthe oryzae in Australia and genes with resistance to these races revealed through host resistance screening in monogenic lines of Oryza sativa

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Rice blast is the most serious disease threat to rice production worldwide. It is difficult to control due to the complex diversity and wide geographic distribution of the causal pathogen Magnaporthe oryzae. In Australia, rice blast occurs in northern Australia but remains exotic to the main south-eastern rice growing area; however, there is the potential for rice blast to threaten this area; in addition, rice production is currently expanding from south-eastern Australia into northern Australia, which makes rice blast a major concern and challenge to rice industry in Australia. Prior to this study, there was lack of information on the race status of M. oryzae present in Australia and on how to manage the disease through host resistance. The races of rice blast isolates collected in northern Australia was characterised based on the disease reactions of eight standard rice differentials used in an international race differential system. The following studies revealed genes conferring resistance to these races through investigating the responses of 25 monogenic rice lines with targeted resistance gene against different races. The rice blast isolates were characterised into five races: IA-1, IA-3, IA-63, IB-3 and IB-59. Genes Pi40, Piz-t, Pi9, Pi5(t) and Pi12(t) exhibited resistance to all the isolates belonging to five races. In addition, two genes showed complete resistance to multiple races, viz. Pi9 that showed complete resistance to races IA-1, IA-3, IA-63 and IB-3 and Pita2 that had complete resistance to races IA-3, IB-3 and IB-59. This study provides information about the races of M. oryzae in Australia. Genes identified conferring resistance to multiple races will not only streamline the identification via molecular markers of imported rice varieties with resistance to rice blast in Australia, but will also allow the Australian rice breeding program to develop new varieties with broad-spectrum resistance to rice blast and pyramid multi-gene resistance into Australian rice varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anjos, L. M., Santos, G. R., Dias Neto, J., Oliveira, W. F., & Castro Neto, M. (2009). Identificação de raças fisiológicas de Magnaporthe grisea em áreas de arroz irrigado no Estado do Tocantins. Tropical Plant Pathology, 34, 182–185.

    Article  Google Scholar 

  • Australian plant pest database (2001). Plant Health Australia. www.planthealthaustralia.com.au/appd. Accessed 17 Mar 2016.

  • Campbell, M. A., Chen, D., & Ronald, P. C. (2004). Development of co-dominant amplified polymorphic sequence markers in rice that flank the Magnaporthe grisea resistance gene Pi7(t) in recombinant inbred line 29. Phytopathology, 94, 302–307.

    Article  CAS  PubMed  Google Scholar 

  • Cockfield, G., Mushtaq, S., & White, N. (2012). Relocation of intensive agriculture to northern Australia: the case of the rice industry. Toowoomba, Australia: University of Southern Queensland.

  • Dai, Y. T., Jia, Y. L., Correll, J., Wang, X. Y., & Wang, Y. L. (2010). Diversification and evolution of the avirulence gene AVR-Pita1 in field isolates of Magnaporthe oryzae. Fungal Genetics and Biology, 47, 973–980.

    Article  CAS  PubMed  Google Scholar 

  • Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., et al. (2012). The top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology, 13, 414–430.

    Article  PubMed  Google Scholar 

  • Deng, Y., Zhu, X., Shen, Y., & He, Z. (2006). Genetic characterization and fine mapping of the blast resistance locus Pigm (t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theoretical and Applied Genetics, 113, 705–713.

    Article  CAS  PubMed  Google Scholar 

  • Divya, B., Robin, S., Rabindran, R., Manjunath, H., Valarmathi, P., & Joel, A. J. (2014). Resistance reaction of gene introgressed lines against rice blast (Pyricularia oryzae) disease. Australasian Plant Pathology, 43, 177–191.

    Article  CAS  Google Scholar 

  • Fang, X., Kuo, J., You, M. P., Finnegan, P. M., & Barbetti, M. J. (2012). Comparative root colonisation of strawberry cultivars Camarosa and festival by Fusarium oxysporum f. Sp fragariae. Plant and Soil, 358, 71–85.

    Article  Google Scholar 

  • Fang, X., Finnegan, P. M., & Barbetti, M. J. (2013). Wide variation in virulence and genetic diversity of binucleate Rhizoctonia isolates associated with root rot of strawberry in Western Australia. PloS One, 8, e55877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faostat (2015). http://faostat.fao.org /.

  • Heaton, J. B. (1964). Rice blast disease (Pyricularia oryzae Cav) of the northern territory. The Australian Journal of Science, 27, 81.

    Google Scholar 

  • Henry, R. J., Rice, N., Waters, D. L., Kasem, S., Ishikawa, R., Hao, Y., et al. (2010). Australian Oryza: utility and conservation. Rice, 3, 235–241.

    Article  Google Scholar 

  • Hittalmani, S., Parco, A., Mew, T. V., Zeigler, R. S., & Huang, N. (2000). Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theoretical and Applied Genetics, 100, 1121–1128.

    Article  CAS  Google Scholar 

  • Imam, J., Alam, S., Mandal, N. P., Variar, M., & Shukla, P. (2014). Molecular screening for identification of blast resistance genes in north east and eastern Indian rice germplasm (Oryza sativa L.) with PCR based makers. Euphytica, 196, 199–211.

    Article  CAS  Google Scholar 

  • Jeger, M. J., Pautasso, M., Holdenrieder, O., & Shaw, M. W. (2007). Modelling disease spread and control in networks: implications for plant sciences. New Phytologist, 174, 279–297.

    Article  PubMed  Google Scholar 

  • Jeon, J. S., Chen, D., Yi, G. H., Wang, G. L., & Ronald, P. C. (2003). Genetic and physical mapping of Pi5(t), a locus associated with broad-spectrum resistance to rice blast. Molecular Genetics and Genomics, 269, 280–289.

    CAS  PubMed  Google Scholar 

  • Jeung, J. U., Kim, B. R., Cho, Y. C., Han, S. S., Moon, H. P., Lee, Y. T., et al. (2007). A novel gene, Pi40(t), linked to the DNA markers derived from NBS-LRR motifs confers broad spectrum of blast resistance in rice. Theoretical and Applied Genetics, 115, 1163–1177.

    Article  CAS  PubMed  Google Scholar 

  • Jia, Y., McAdams, S. A., Bryan, G. T., Hershey, H. P., & Valent, B. (2000). Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO Journal, 19, 4004–4014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, Y. L., Wang, Z. H., Fjellstrom, R. G., Moldenhauer, K. A. K., Azam, M. A., Correll, J., et al. (2004). Rice Pi-ta gene confers resistance to the major pathotypes of the rice blast fungus in the United States. Phytopathology, 94, 296–301.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, N., Li, Z. Q., Wu, J., Wang, Y., Wu, L. Q., Wang, S. H., et al. (2012). Molecular mapping of the Pi2/9 allelic gene Pi2-2 conferring broad-spectrum resistance to Magnaporthe oryzae in the rice cultivar Jefferson. Rice, 5, 29.

    Article  PubMed  Google Scholar 

  • Khush, G. S. (2005). What it will take to feed 5.0 billion Rice consumers in 2030. Plant Molecular Biology, 59, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi, N., Telebanco-Yanoria, M. J., Tsunematsu, H., Kato, H., Imbe, T., & Fukuta, Y. (2007). Development of new sets of international standard differential varieties for blast resistance in rice (Oryza sativa L.). Jarq-Japan Agricultural Research Quarterly, 41, 31–37.

    Article  Google Scholar 

  • Lanoiselet, V., Cother, E., Ash, G., & Harper, J. (2002). First report of Sclerotium hydrophilum on leaf sheath of rice (Oryza sativa) in South-Eastern Australia. Plant Pathology, 51, 813–813.

    Article  Google Scholar 

  • Levy, M., Correavictoria, F. J., Zeigler, R. S., Xu, S. Z., & Hamer, J. E. (1993). Genetic diversity of the rice blast fungus in a disease nursery in Colombia. Phytopathology, 83, 1427–1433.

    Article  CAS  Google Scholar 

  • Ling, K., & Ou, S. (1969). Standardization of the international race numbers of Pyricularia oryzae. Phytopathology, 59, 339–342.

    Google Scholar 

  • Liu, G., Lu, G., Zeng, L., & Wang, G. L. (2002). Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6. Molecular Genetics and Genomics, 267, 472–480.

    Article  CAS  PubMed  Google Scholar 

  • Mackill, D. J., & Bonman, J. M. (1992). Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology, 82, 746–749.

    Article  Google Scholar 

  • Mckinney, H. (1923). A new system of grading plant diseases. Journal of Agricultural Research, 26, 195–218.

    Google Scholar 

  • Noguchi, M. T., Yasuda, N., & Fujita, Y. (2007). Fitness characters in parasexual recombinants of the rice blast fungus, Pyricularia oryzae. Jarq-Japan Agricultural Research Quarterly, 41, 123–131.

    Article  CAS  Google Scholar 

  • Ou, S. H. (1985). Rice Diseases. Slough, UK: Commonwealth Mycological Institute.

  • Pak, D., You, M. P., Lanoiselet, V., & Barbetti, M. J. (2016). Reservoir of cultivated rice pathogens in wild rice in Australia. European Journal of Plant Pathology, 1–17. doi:10.1007/s10658-016-1002-y.

  • Plant Health Australia (2014). Industry Biosecurity Plan for the Rice Industry. Deakin, Australia: Plant Health Australia.

  • Population Institute (2013). 2030: The “Perfect Storm” Scenario. www.populationinstitute.org.

  • Scheuermann, K. K., Raimondi, J. V., Marschalek, R., de Andrade, A., & Wickert, E. (2012). Magnaporthe oryzae genetic diversity and its outcomes on the search for durable resistance. In M. Caliskan (Ed.), The Molecular Basis of Plant Genetic (pp. 331–356). Rijeka, Croatia: InTech.

  • Shen, Y., Henry, A., Zhu, X.-D., Joelle, M., Chen, H.-Q., & Didier, T. (2003). Resistance evaluation of some hybrid rice, conventional early Indica and late japonica rice to Magnaporthe grisea. Agricultural Sciences in China, 2, 1351–1356.

    Google Scholar 

  • Suh, J. P., Roh, J. H., Cho, Y. C., Han, S. S., Kim, Y. G., & Jena, K. K. (2009). The Pi40 gene for durable resistance to rice blast and molecular analysis of Pi40-advanced backcross breeding lines. Phytopathology, 99, 243–250.

    Article  CAS  PubMed  Google Scholar 

  • Telebanco-Yanoria, M. J., Imbe, T., Kato, H., Tsunematsu, H., Ebron, L. A., Cruz, C. M. V., et al. (2008). A set of standard differential blast isolates (Magnaporthe grisea (Hebert) Barr.) from the Philippines for rice (Oryza sativa L.) resistance. Jarq-Japan Agricultural. Research Quarterly, 42, 23–34.

    Google Scholar 

  • TRRC Annual Progress Report (2014). Bangkok, Thailand: Temperate Rice research Consortium (TRRC).

  • Tsunematsu, H., Yanoria, M. J. T., Ebron, L. A., Hayashi, N., Ando, I., Kato, H., et al. (2000). Development of monogenic lines of rice for blast resistance. Breeding Science, 50, 229–234.

    Article  Google Scholar 

  • Valent, B., & Chumley, F. G. (1991). Molecular genetic-analysis of the rice blast fungus, Magnaporthe grisea. Annual Review of Phytopathology, 29, 443–467.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, R. A., & Talbot, N. J. (2009). Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nature Reviews Microbiology, 7, 185–195.

    Article  CAS  PubMed  Google Scholar 

  • Xing, J. J., Jia, Y. L., Correll, J. C., Lee, F. N., Cartwright, R., Cao, M. L., et al. (2013). Analysis of genetic and molecular identity among field isolates of the rice blast fungus with an international differential system, rep-PCR, and DNA sequencing. Plant Disease, 97, 491–495.

    Article  CAS  Google Scholar 

  • Zeigler, R. S., Tohme, J., Nelson, R., Levy, M., & Correavictoria, F. J. (1994). Lineage exclusion-a proposal for linking blast population analysis to resistance breeding. Rice Blast Disease, 1994, 267–292.

  • Zhou, B., Qu, S. H., Liu, G. F., Dolan, M., Sakai, H., Lu, G. D., et al. (2006). The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Molecular Plant-Microbe Interactions, 19, 1216–1228.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Rural Industries Research and Development Corporation (project no. PRJ-008565). We thank Dr. Roger Shivas at the Department of Agriculture, Fisheries and Forestry, Queensland and University of Queensland, Australia for providing some of the isolates; Andrew Barfield at Rice Research Australia Pty. Ltd. and Dr. Russell Reinke at IRRI for providing seeds of the rice differentials and monogenic rice lines. We also thank Mr. Robert Creasy and Mr. Bill Piasini at the University of Western Australia for their technical assistance in the glasshouse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangling Fang.

Electronic supplementary material

ESM 1

(DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Snell, P., Barbetti, M.J. et al. Races of Magnaporthe oryzae in Australia and genes with resistance to these races revealed through host resistance screening in monogenic lines of Oryza sativa . Eur J Plant Pathol 148, 647–656 (2017). https://doi.org/10.1007/s10658-016-1122-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1122-4

Keywords

Navigation