Skip to main content
Log in

Formation of conidial anastomosis tubes and melanization of appressoria are antagonistic processes in Colletotrichum spp. from apple

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Colletotrichum spp. cause two important apple diseases, i.e., bitter rot (ABR) and Glomerella leaf spot (GLS). The present study aimed to compare the development of conidial anastomosis tubes (CATs) of strains of Colletotrichum spp. originating from ABR and GLS. For that, conidia were distributed on polystyrene slides and detached apple leaves surfaces, and the development of CATs and pre-infection structures, was microscopically examined. CATs connections were quantified and categorized into three types: conidium-conidium (c-c), conidium-germ tube (c-t) and germ tube-germ tube (t-t). CATs were observed in half of the strains, and Colletotrichum nymphaeae markedly produced more c-c connections at a higher speed. The t-t connections were less often observed in all strains. CATs were also frequently found in strains of Colletotrichum fructicola from fruits, but not in those from leaves, or in Colletotrichum theobromicola. Conidial germlings that produced CATs on polystyrene also did on leaves. Nuclear transference was observed in CATs. Appressoria melanization and CATs development were found to be antagonistic processes. The possible contribution of CATs and consequences for increasing variability of Colletotrichum on apple are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albuquerque, P., & Casadevall, A. (2012). Quorum sensing in fungi – a review. Medical Mycology, 50(4), 337–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araújo, L., & Stadnik, M. J. (2013a). Cultivar-specific and ulvan-induced resistance of apple plants to Glomerella leaf spot are associated with enhanced activity of peroxidases. Acta Scientiarum, 35(3), 287–293.

    Google Scholar 

  • Araújo, L., & Stadnik, M. J. (2013b). Múltiplos apressórios e tubos de anastomoses conidiais no processo infeccioso de Colletotrichum gloeosporioides em macieira. Bragantia, 72(2), 180–183.

    Article  Google Scholar 

  • Araújo, L., Gonçalves, A. E., & Stadnik, M. J. (2014). Ulvan effect on germination and appressoria formation of Colletotrichum gloeosporiodes. Phytoparasitica, 42(5), 631–640.

    Article  Google Scholar 

  • Calo, S., Billmyre, R. B., & Heitman, J. (2013). Generators of phenothypic diversity in the evolution of pathogenic microorganisms. PLoS Pathogens, 9(3), e1003181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon, P. F., Damm, U., Johnston, P. R., & Weir, B. S. (2012). Colletotrichum-current status and future directions. Studies in Mycology, 73(1), 181–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves, A. E., & Stadnik, M. J. (2012). Interferência de ulvana na formação melanização de apressórios de Colletotrichum gloeosporioides. Tropical Plant Pathology, 37(6), 431–437.

    Article  Google Scholar 

  • González, E., Sutton, T. B., & Correll, J. C. (2006). Clarification of the etiology of Glomerella leaf spot and bitter rot of apple caused by Colletotrichum spp. based on morphology and genetic, molecular, and pathogenicity tests. Phytopathology, 96(9), 982–992.

    Article  PubMed  Google Scholar 

  • Ishikawa, F. H., Souza, E. A., Read, N. D., & Roca, M. G. (2010). Live-cell imaging of conidial fusion in the bean pathogen. Colletotrichum lindemuthianum, Fungal Biology, 114(1), 2–9.

    Article  PubMed  Google Scholar 

  • Ishikawa, F. H., Souza, E. A., Shoji, J. Y., Connolly, L., Freitag, M., Read, N. D., & Roca, M. G. (2012). Heterokaryon incompatibility is suppressed following conidial anastomosis tube fusion in a fungal plant pathogen. PloS One, 7(2), e31175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James, S. W., Mirabito, P. M., Scacheri, P. C., & Morris, N. R. (1995). The Aspergillus nidulans bimE (blocked-in-mitosis) gene encodes multiple cell cycle functions involved in mitotic checkpoint control and mitosis. Journal of Cell Science, 108(11), 3485–3499.

    CAS  PubMed  Google Scholar 

  • Kershaw, M. J., & Talbot, N. J. (2009). Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proceedings of the National Academy of Sciences of the United States of America, 106(37), 15967–15972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latunde-Dada, A. O., O’Connell, R. J., Nash, C., & Lucas, J. A. (1999). Stomatal penetration of cowpea (Vigna unguiculata) leaves by a Colletotrichum species causing latent anthracnose. Plant Pathology, 48(6), 777–785.

    Article  Google Scholar 

  • Ludwig, N., Löhrer, M., Hempel, M., Mathea, S., Schliebner, I., Menezel, M., Kiesow, A., Schaffrath, U., Deising, H. B., & Horbach, F. (2014). Melanin is not required for turgor generation but enhances cell-wall rigidity in appressoria of the corn pathogen Colletotrichum graminicola. Molecular Plant-Microbe Interactions, 27(4), 315–327.

    Article  PubMed  Google Scholar 

  • Mehrabi, R., Bahkali, A. H., Abd-Elsalam, K. A., Moslem, M., M’barek, S. B., Gohari, A. M., Jashni, M. K., Stergiopoulos, L., Kema, G. H. J., & Wit, P. J. G. M. (2011). Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host range. FEMS Microbiology Review, 35(3), 542–554.

    Article  CAS  Google Scholar 

  • Nesher, I., Barhoom, S. & Sharon, A. 2008. Cell cycle and cell death are not necessary for appressorium formation and plant infection in the fungal plant pathogen Colletotrichum gloeosporioides. BMC Biology, (6)9, 1–11.

  • Pandey, A., Roca, M. G., Read, N. D., & Glass, N. L. (2004). Role of a mitogen-activated protein kinase pathway during conidial germination and hyphal fusion in Neurospora crassa. Eukaryotic Cell, 3(2), 348–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pontecorvo, G. (1956). The parasexual cycle in fungi. Annual Review of Microbiology, 10(1), 393–400.

    Article  CAS  PubMed  Google Scholar 

  • Read, N. D., Lichius, A., Shoji, J., & Goryachev, A. B. (2009). Self-signaling and self-fusion in filamentous fungi. Current Opinion in Microbiology, 12(6), 608–615.

    Article  PubMed  Google Scholar 

  • Roca, M. G., Davide, L. C., Mendes-Costa & M. C. & Wheals, A. (2003). Conidial anastomosis tubes in Colleotrichum. Fungal Genetics and Biology, 40(2), 138–145.

  • Roca, M. G., Davide, L. C., Davide, L. M. C., Mendes-Costa, M. C., Schwan, R. F., & Wheals, A. E. (2004). Conidial anastomosis fusion between Colletotrichum species. Mycological Research, 108(11), 1320–1326.

    Article  PubMed  Google Scholar 

  • Roca, M. G., Read, N. D., & Wheals, A. E. (2005). Conidial anastomosis tubes in filamentous fungi. FEMS Microbiology Letters, 249(2), 191–198.

    Article  CAS  Google Scholar 

  • Roca, M. G., Wheichert, M., Siegmund, U., Tudzynski, P., & Fleißner, A. (2012). Germling fusion via conidial anastomosis tubes in the grey mould Botrytis cinerea requires NADPH oxidase activity. Fungal Biology, 116(3), 379–387.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Roldán, M. C., Köhli, M., Roncero, M. I., Philippsen, P., Di Pietro, A., & Espeso, E. A. (2010). Nuclear dynamics during germination, conidiation, and hyphal fusion of Fusarium oxysporum. Eukaryotic Cell, 9(8), 1216–1224.

    Article  PubMed  PubMed Central  Google Scholar 

  • Takano, Y., Kikuchi, T., Kubo, Y., Hamer, J. E., Mise, K., & Furusawa, Y. (2000). The Colletotrichum lagenarium MAP kinase Gene CMK1 regulates diverse aspects of fungal pathogenesis. Molecular Plant-Microbe Interactions, 13(4), 374–383.

    Article  CAS  PubMed  Google Scholar 

  • Velho, A. C., Alaniz, S., Casanova, L., Mondino, P., & Stadnik, M. J. (2015). New insights into the characterization of Colletotrichum species associated with apple diseases in Southern Brazil and Uruguay. Fungal Biology, 119(4), 229–244.

    Article  PubMed  Google Scholar 

  • Wharton, P. S., & Diéguez-Uribeondo, J. (2004). The biology of Colletotrichum acutatum. Anales del Jardin Botánico de Madrid, 61(1), 3–22.

    Google Scholar 

  • Zeigler, R. S., Scott, R. P., Leung, H., Bordeos, A. A., Kumar, J., & Nelson, R. J. (1997). Evidence of parasexual exchange of DNA in the rice blast fungus challenges its exclusive clonality. Phytopathology, 87(3), 284–294.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Brazilian Ministry of Education Agency for Graduate Studies (CAPES) for granting the M.Sc.-scholarship to the first author. M.J.S is a research member of the National Council for Scientific and Technological Development (CNPq). We are also grateful to Dr. M.B. de Freitas (UFSC) for critical reviewing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marciel J. Stadnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, A.E., Velho, A.C. & Stadnik, M.J. Formation of conidial anastomosis tubes and melanization of appressoria are antagonistic processes in Colletotrichum spp. from apple. Eur J Plant Pathol 146, 497–506 (2016). https://doi.org/10.1007/s10658-016-0934-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-0934-6

Keywords

Navigation