Skip to main content

Advertisement

Log in

Lack of association between Fusarium graminearum resistance in spike and crude extract tolerance in seedling of wheat

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Fusarium graminearum is a hemibiotrophic plant fungal pathogen that causes head and seedling blight in wheat and other cereals; however little is known about the mechanisms involved in its pathogenicity. To examine the role of pathogen metabolites in pathogenecity, we studied the effects of F. graminearum crude extract on physiological and morphological responses of Falat and Sumai3, as respectively susceptible and resistant wheat cultivars to Fusarium head blight (FHB). Our results showed that seed germination, seedling growth and coleoptile cell development were highly affected by the pathogen crude extract in both cultivars, with Sumai3 growth being more affected than Falat. These results show little correspondence between wheat seedling tolerance to F. graminearum crude extract and resistance to FHB. Crude extract treatment resulted in significant increase of hydrogen peroxide (H2O2) and malondialdehyde (MDA) content in both cultivars which indicated an oxidative stress. Differential antioxidative responses to crude extract was observed; as activity of polyphenol oxidase (PPO), superoxide dismutase (SOD) and ascorbate peroxidases (APX) increased in Falat and decreased in Sumai3. In addition, a greater phenylalanine ammonia-lyase (PAL) activity was observed in treated seedlings of both cultivars. Quantitative Real- time PCR analysis showed that PAL gene expression in Falat was induced about 4 folds higher than Sumai3 under treatment. Taken together, our data suggest that a better employment of enzymatic and none enzymatic antioxidative systems in Falat could explain its higher degree of tolerance compared with Sumai3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abeles, F. B., & Biles, C. L. (1991). Characterization of peroxidases in lignifying peach fruit endocarp. Plant Physiology, 95(1), 269–273.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Aebi, H., & Catalase, B. H. (1974). Methods of enzymatic analysis (pp. 673–677). New York: Academic.

    Book  Google Scholar 

  • Akkol, E. K., Göger, F., Koşar, M., & Başer, K. H. C. (2008). Phenolic composition and biological activities of Salvia halophila and Salvia virgata from Turkey. Food Chemistry, 108(3), 942–949.

    Article  PubMed  CAS  Google Scholar 

  • Asran, M., & Eraky Amal, M. (2011). Aggressiveness of certain Fusarium graminearum isolates on wheat seedlings and relation with their trichothecene production. Plant Pathology Journal, 10(1), 36–41.

    Article  Google Scholar 

  • Bai, G., & Shaner, G. (2004). Management and resistance in wheat and barley to Fusarium head blight 1. Annual Review of Phytopathology, 42, 135–161.

    Article  PubMed  CAS  Google Scholar 

  • Bowles, D. J. (1990). Defense-related proteins in higher plants. Annual Review of Biochemistry, 59(1), 873–907.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1), 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Bruins, M., Karsai, I., Schepers, J., & Snijders, C. (1993). Phytotoxicity of deoxynivalenol to wheat tissue with regard to in vitro selection for Fusarium head blight resistance. Plant Science, 94(1), 195–206.

    Article  CAS  Google Scholar 

  • Buerstmayr, H., Lemmens, M., Grausgruber, H., & Ruckenbauer, P. (1997). Breeding for scab resistance in wheat: inheritance of resistance and possibilities for in vitro selection. In Fusarium head scab: global status and future prospects: Proceedings of a workshop held at CIMMYT, El Batan, Mexico, 13–17 October, 1996 (pp. 52). CIMMYT.

  • Chao, Y.-Y., Chen, C.-Y., Huang, W.-D., & Kao, C. H. (2010). Salicylic acid-mediated hydrogen peroxide accumulation and protection against Cd toxicity in rice leaves. Plant and Soil, 329(1–2), 327–337.

    Article  CAS  Google Scholar 

  • Conde, E., Cadahia, E., & Garcia-Vallejo, M. (1995). HPLC analysis of flavonoids and phenolic acids and aldehydes in eucalyptus spp. Chromatographia, 41(11–12), 657–660.

    Article  CAS  Google Scholar 

  • Desmond, O. J., Manners, J. M., Stephens, A. E., Maclean, D. J., Schenk, P. M., Gardiner, D. M., et al. (2008). The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. Molecular Plant Pathology, 9(4), 435–445.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, R. A., & Lamb, C. J. (1990). Molecular communication in interactions between plants and microbial pathogens. Annual Review of Plant Biology, 41(1), 339–367.

    Article  CAS  Google Scholar 

  • Dixon, R. A., & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. The Plant Cell, 7(7), 1085.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Foroud, N., Ouellet, T., Laroche, A., Oosterveen, B., Jordan, M., Ellis, B., & Eudes, F. (2012). Differential transcriptome analyses of three wheat genotypes reveal different host response pathways associated with Fusarium head blight and trichothecene resistance. Plant Pathology, 61(2), 296–314.

    Article  CAS  Google Scholar 

  • García-Limones, C., Hervás, A., Navas-Cortés, J. A., Jiménez-Díaz, R. M., & Tena, M. (2002). Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceris. Physiological and Molecular Plant Pathology, 61(6), 325–337.

    Article  Google Scholar 

  • Giannopolitis, C. N., & Ries, S. K. (1977). Superoxide dismutases I. Occurrence in higher plants. Plant Physiology, 59(2), 309–314.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gilbert, J., & Tekauz, A. (2000). Review: recent developments in research on Fusarium head blight of wheat in Canada. Canadian Journal of Plant Pathology, 22(1), 1–8.

    Article  Google Scholar 

  • Grey, W., & Mathre, D. (1984). Reaction of spring barleys to common root rot and its effect on yield components. Canadian Journal of Plant Science, 64(2), 245–253.

    Article  Google Scholar 

  • Guo, X., Chen, Y., Li, C., & Ren, H. (2007). Effects of Fusarium graminearum crude toxin on MDA contents and SOD and PAL activities in the seedlings of different wheat varieties.

  • Haigh, I., Jenkinson, P., & Hare, M. (2009). The effect of a mixture of seed-borne Microdochium nivale var. majus and Microdochium nivale var. nivale infection on Fusarium seedling blight severity and subsequent stem colonisation and growth of winter wheat in pot experiments. European Journal of Plant Pathology, 124(1), 65–73.

    Article  Google Scholar 

  • Hasan, H. A. H. (1999). Phytotoxicity of pathogenic fungi and their mycotoxins to cereal seedling viability. Mycopathologia, 148(3), 149–155.

    Article  PubMed  CAS  Google Scholar 

  • Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental Botany, 68(1), 14–25.

    Article  CAS  Google Scholar 

  • He, J., Yang, R., Zhou, T., Tsao, R., Young, J. C., Zhu, H., et al. (2007). Purification of deoxynivalenol from Fusarium graminearum rice culture and mouldy corn by high-speed counter-current chromatography. Journal of Chromatography A, 1151(1), 187–192.

    Article  PubMed  CAS  Google Scholar 

  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189–198.

    Article  PubMed  CAS  Google Scholar 

  • Hemm, M. R., Rider, S. D., Ogas, J., Murry, D. J., & Chapple, C. (2004). Light induces phenylpropanoid metabolism in Arabidopsis roots. The Plant Journal, 38(5), 765–778.

    Article  PubMed  CAS  Google Scholar 

  • Hill-Ambroz, K., Webb, C. A., Matthews, A. R., Li, W., Gill, B. S., & Fellers, J. P. (2006). Expression analysis and physical mapping of a cDNA library of Fusarium head blight infected wheat spikes. Crop Science, 46(Supplement_1), S-15–S-26.

    Article  Google Scholar 

  • Jayatilake, D., Bai, G., & Dong, Y. (2011). A novel quantitative trait locus for Fusarium head blight resistance in chromosome 7A of wheat. Theoretical and Applied Genetics, 122(6), 1189–1198.

    Article  PubMed  CAS  Google Scholar 

  • Jebara, S., Jebara, M., Limam, F., & Aouani, M. E. (2005). Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. Journal of Plant Physiology, 162(8), 929–936.

    Article  PubMed  CAS  Google Scholar 

  • Kang, G., Wang, C., Sun, G., & Wang, Z. (2003). Salicylic acid changes activities of H 2 O 2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environmental and Experimental Botany, 50(1), 9–15.

    Article  CAS  Google Scholar 

  • Kotal, F., & Radova, Z. (2002). A simple method for determination of deoxynivalenol in cereals and flours. Czech Journal of Food Sciences, 20(2), 63–68.

    CAS  Google Scholar 

  • Krantev, A., Yordanova, R., Janda, T., Szalai, G., & Popova, L. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology, 165(9), 920–931.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D. H., & Lee, C. B. (2000). Chilling stress-induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. Plant Science, 159(1), 75–85.

    Article  PubMed  CAS  Google Scholar 

  • Lemmens, M., Scholz, U., Berthiller, F., Dall’Asta, C., Koutnik, A., Schuhmacher, R., et al. (2005). The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Molecular Plant-Microbe Interactions, 18(12), 1318–1324.

    Article  PubMed  CAS  Google Scholar 

  • Li, H.-B., Cheng, K.-W., Wong, C.-C., Fan, K.-W., Chen, F., & Jiang, Y. (2007). Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chemistry, 102(3), 771–776.

    Article  CAS  Google Scholar 

  • Li, X., Zhang, J., Song, B., Li, H., Xu, H., Qu, B., et al. (2010). Resistance to Fusarium head blight and seedling blight in wheat is associated with activation of a cytochrome P450 gene. Phytopathology, 100(2), 183–191.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z.-W., Li, H.-P., Cheng, W., Yang, P., Zhang, J.-B., Gong, A.-D., et al. (2012). Enhanced overall resistance to Fusarium seedling blight and Fusarium head blight in transgenic wheat by co-expression of anti-fungal peptides. European Journal of Plant Pathology, 134(4), 721–732.

    Article  CAS  Google Scholar 

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4), 402–408.

    Article  PubMed  CAS  Google Scholar 

  • Makandar, R., Nalam, V. J., Lee, H., Trick, H. N., Dong, Y., & Shah, J. (2012). Salicylic acid regulates basal resistance to Fusarium head blight in wheat. Molecular Plant-Microbe Interactions, 25(3), 431–439.

    Article  PubMed  CAS  Google Scholar 

  • Mandal, S., Mallick, N., & Mitra, A. (2009). Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersic in tomato. Plant Physiology and Biochemistry, 47(7), 642–649.

    Article  PubMed  CAS  Google Scholar 

  • Mesterhazy, A., Bartok, T., Mirocha, C., & Komoroczy, R. (1999). Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breeding, 118(2), 97–110.

    Article  CAS  Google Scholar 

  • Mishra, K., Ojha, H., & Chaudhury, N. K. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: a critical review and results. Food Chemistry, 130(4), 1036–1043.

    Article  CAS  Google Scholar 

  • Mohammadi, M., & Kazemi, H. (2002). Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Science, 162(4), 491–498.

    Article  CAS  Google Scholar 

  • Ochoa-Alejo, N., & Gómez-Peralta, J. E. (1993). Activity of enzymes involved in capsaicin biosynthesis in callus tissue and fruits of chili pepper (Capsicum annuumL.). Journal of Plant Physiology, 141(2), 147–152.

    Article  CAS  Google Scholar 

  • Poppenberger, B., Berthiller, F., Lucyshyn, D., Sieberer, T., Schuhmacher, R., Krska, R., et al. (2003). Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. Journal of Biological Chemistry, 278(48), 47905–47914.

    Article  PubMed  CAS  Google Scholar 

  • Raymond, J., Rakariyatham, N., & Azanza, J. (1993). Purification and some properties of polyphenoloxidase from sunflower seeds. Phytochemistry, 34(4), 927–931.

    Article  CAS  Google Scholar 

  • Schroeder, H., & Christensen, J. (1963). Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology, 53(7), 831–838.

    Google Scholar 

  • Shaheen, S., Naseer, S., Ashraf, M., & Akram, N. A. (2013). Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. Journal of Plant Interactions, 8(1), 85–96.

    Article  CAS  Google Scholar 

  • Shetty, N. P., Lyngs Jørgensen, H. J., Jensen, J. D., Collinge, D. B., & Shekar Shetty, H. (2008). Roles of reactive oxygen species in interactions between plants and pathogens. European Journal of Plant Pathology, 121(3), 267–280.

    Article  CAS  Google Scholar 

  • Shimada, K., Fujikawa, K., Yahara, K., & Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry, 40(6), 945–948.

    Article  CAS  Google Scholar 

  • Skadhauge, B., Thomsen, K. K., & Wettstein, D. (1997). The role of the barley testa layer and its flavonoid content in resistance to Fusarium infections. Hereditas, 126(2), 147–160.

    Article  CAS  Google Scholar 

  • Tahsili, J., Sharifi, M., Safaie, N., Esmaeilzadeh-Bahabadi, S., & Behmanesh, M. (2014). Induction of lignans and phenolic compounds in cell culture of Linum album by culture filtrate of Fusarium graminearum. Journal of Plant Interactions, 9(1), 412–417.

    Article  Google Scholar 

  • Talas, F., Parzies, H. K., & Miedaner, T. (2011). Diversity in genetic structure and chemotype composition of Fusarium graminearum sensu stricto populations causing wheat head blight in individual fields in Germany. European Journal of Plant Pathology, 131(1), 39–48.

    Article  Google Scholar 

  • Van den Bulk, R. (1991). Application of cell and tissue culture and in vitro selection for disease resistance breeding—a review. Euphytica, 56(3), 269–285.

    Article  Google Scholar 

  • Velikova, V., Yordanov, I., & Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science, 151(1), 59–66.

    Article  CAS  Google Scholar 

  • Wang, Y., & Miller, J. (1988). Effects of Fusarium graminearum metabolites on wheat tissue in relation to Fusarium head blight resistance. Journal of Phytopathology, 122(2), 118–125.

    Article  CAS  Google Scholar 

  • Wiśniewska, H., & Chełkowski, J. (1999). Influence of exogenic salicylic acid on Fusarium seedling blight reduction in barley. Acta Physiologiae Plantarum, 21(1), 63–66.

    Article  Google Scholar 

  • Zhang, X.-W., Jia, L.-J., Zhang, Y., Jiang, G., Li, X., Zhang, D., et al. (2012). In planta stage-specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles. The Plant Cell, 24(12), 5159–5176.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou, W., Kolb, F. L., & Riechers, D. E. (2005). Identification of proteins induced or upregulated by Fusarium head blight infection in the spikes of hexaploid wheat (Triticum aestivum). Genome, 48(5), 770–780.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for constructive comments on an earlier version of this paper. The financial support of this research was equally provided by College of Science, University of Tehran and Gorgan University of Agricultural Sciences and Natural Resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Soltanloo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 113 kb)

ESM 2

(DOCX 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorahinobar, M., Niknam, V., Ebrahimzadeh, H. et al. Lack of association between Fusarium graminearum resistance in spike and crude extract tolerance in seedling of wheat. Eur J Plant Pathol 144, 525–538 (2016). https://doi.org/10.1007/s10658-015-0792-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0792-7

Keywords

Navigation