Skip to main content

Advertisement

Log in

The role of jasmonic acid signalling in wheat (Triticum aestivum L.) powdery mildew resistance reaction

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Jasmonic acid (JA) signalling plays an important role in plant resistance to pathogens. Previously, JA has been found to play a role in induced disease resistance to necrotrophic pathogens in various plant species, but current researches showed that JA also enhanced resistance to biotrophic pathogens. However, its role in wheat (Triticum aestivum L.) powdery mildew (Blumeria graminis f. sp. tritici, Bgt) resistance reaction is largely unknown. To settle this issue, several typical powdery mildew resistant and susceptible wheat varieties were employed. The sensitivity to exogenous methyl jasmonate (MeJA) to wheat powdery mildew resistance, the concentration fluctuation of endogenous JAs after Bgt inoculation, and the expression profiles of nine pathogenesis-related protein genes (PR genes) after MeJA and Bgt treatments were studied systematically. Exogenous MeJA significantly enhanced the powdery mildew resistance of the susceptible varieties. After inoculation with Bgt, endogenous JAs accumulated rapidly, reached the maxima at 2 to 5 h post-inoculation (hpi), then decreased rapidly, and the concentration was almost the same as that of un-inoculated control at 96 hpi. The expression levels of the nine PRs were measured by real time quantitative RT-PCR (qRT-PCR) at different time points after MeJA application or Bgt inoculation respectively. The MeJA and Bgt strongly activated PR1, PR2, PR3, PR4, PR5, PR9, PR10 and Ta-JA2, but almost didn’t affect Ta-GLP2a. The induced powdery mildew resistance was positively correlated with the activated PR genes. JA plays a positive role in defence against Bgt. JA is a signalling molecule in wheat powdery mildew resistance and future manipulation of this pathway may improve powdery mildew resistance in wheat breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arimura, G. I., Ozawa, R., Shimoda, T., Nishioka, T., Boland, W., & Takabayashi, J. (2000). Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature, 406, 512–515.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y. C., Chang, H. S., Lai, H. M., & Jeng, S. T. (2005). Characterization of the wound-inducible protein ipomoelin from sweet potato. Plant, Cell & Environment, 28, 251–259.

    Article  Google Scholar 

  • Desmond, O. J., Edgar, C. I., Manners, J. M., Maclean, D. J., Schenk, P. M., & Kazan, K. (2006). Methyl jasmonate induced gene expression in wheat delays symptom development by the crown rot pathogen Fusarium pseudograminearum. Physiological and Molecular Plant Pathology, 67, 171–179.

    Article  Google Scholar 

  • Dong, X. (1998). SA, JA, ethylene, and disease resistance in plants. Current Opinion in Plant Biology, 1(4), 316–323.

    Article  CAS  PubMed  Google Scholar 

  • Durrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42, 185–209.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, C., & Turner, J. G. (2001). The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell, 13, 1025–1033.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ellis, C., Karafyllidis, I., & Turner, J. G. (2002). Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Molecular Plant-Microbe Interactions, 15, 1025–1030.

    Article  CAS  PubMed  Google Scholar 

  • Engelberth, J., Schmelz, E. A., Alborn, H. T., Cardoza, Y. J., Huang, J., & Tumlinson, J. H. (2003). Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction and gas chromatography-chemical ionization-mass spectrometry. Analytical Biochemistry, 312, 242–250.

    Article  CAS  PubMed  Google Scholar 

  • Fabro, G., Di Rienzo, J. A., Voigt, C. A., Savchenko, T., Dehesh, K., Somerville, S., & Alvarez, M. E. (2008). Genome-wide expression profiling Arabidopsis at the stage of Golovinomyces cichoracearum haustorium formation. Plant Physiology, 146, 1421–1439.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.

    Article  CAS  PubMed  Google Scholar 

  • Glazebrook, J., Chen, W., Estes, B., Chang, H. S., Nawrath, C., Métraux, J. P., Zhu, T., & Katagiri, F. (2003). Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant Journal, 34, 217–228.

    Article  CAS  PubMed  Google Scholar 

  • Haggag, W. M., & Abd-El-Kareem, F. (2009). Methyl jasmonate stimulates polyamines biosynthesisand resistance against leaf rust in wheat plants. Archives of Phytopathology and Plant Protection, 42, 16–31.

    Article  CAS  Google Scholar 

  • Hilpert, B., Bohlmann, H., Przybyla, D., Miersch, O., Buchala, A., & Apel, K. (2001). Isolation and characterization of signal transduction mutants of Arabidopsis thaliana that constitutively activate the octadecanoid pathway and form necrotic microlesions. Plant Journal, 26, 435–446.

    Article  CAS  PubMed  Google Scholar 

  • Kogel, K. H., & Langen, G. (2005). Induced disease resistance and gene expression in cereals. Cellular Microbiology, 7, 1555–1564.

    Article  CAS  PubMed  Google Scholar 

  • Koornneef, A., Leon-Reyes, A., Ritsema, T., Verhage, A., Den Otter, F. C., Van Loon, L. C., & Pieterse, C. M. (2008). Kinetics of salicylate-mediated suppression of jasmonate signaling reveal a role for redox modulation. Plant Physiology, 147, 1358–1368.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lamb, C. J., Lawton, M. A., Dron, M., & Dixon, R. A. (1989). Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell, 56, 215–224.

    Article  CAS  PubMed  Google Scholar 

  • Leon-Reyes, A., Spoel, S. H., De Lange, E. S., Abe, H., Kobayashi, M., Tsuda, S., Millenaar, F. F., Welschen, R. A., Ritsema, T., & Pieterse, C. M. (2009). Ethylene modulates the role of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 in cross talk between salicylate and jasmonate signaling. Plant Physiology, 149, 1797–1809.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leon-Reyes, A., Du, Y., Koornneef, A., Proietti, S., Körbes, A. P., Memelink, J., Pieterse, C. M., & Ritsema, T. (2010). Ethylene signaling renders the jasmonate response of Arabidopsis insensitive to future suppression by salicylic acid. Molecular Plant-Microbe Interactions, 23, 187–197.

    Article  CAS  PubMed  Google Scholar 

  • Li, G., & Yen, Y. (2008). Jasmonate and ethylene signaling pathway may mediate Fusarium head blight resistance in wheat. Crop Science, 48, 1888–1896.

    Article  Google Scholar 

  • Li, L., Li, C., Lee, G. I., & Howe, G. A. (2002). Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proceedings of the National Academy of Sciences, 99, 6416–6421.

    Article  CAS  Google Scholar 

  • Livark, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C (T)) method. Methods, 25, 402–408.

    Article  Google Scholar 

  • Mandal, M. K., Pandey, D., Purwar, S., Singh, U. S., & Kumar, A. (2006). Influence of jasmonic acid as potential activator of induced resistance against Karnal bunt in developing spikes of wheat. Journal of Biosciences, 31, 607–616.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, A. F., & Walters, D. R. (1995). Systemic protection in barley against powdery mildew infection using methyl jasmonate. Aspects of Applied Biology, 42, 323–326.

    Google Scholar 

  • Murray, S. L., Ingle, R. A., Petersen, L. N., & Denby, K. J. (2007). Basal resistance against Pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein. Molecular Plant-Microbe Interactions, 20, 1431–1438.

    Article  CAS  PubMed  Google Scholar 

  • Muthukrishnan, S., Liang, G. H., Trick, H. N., & Gill, B. S. (2001). Pathogenesis-related proteins and their genes in cereals. Plant Cell, Tissue and Organ Culture, 64, 93–114.

    Article  CAS  Google Scholar 

  • Naidoo, R., Ferreira, L., Berger, D. K., Myburg, A. A., & Naidoo, S. (2013). The identification and differential expression of Eucalyptus grandis pathogenesis-related genes in response to salicylic acid and methyl jasmonate. Frontiers in plant science, 4, doi: 10.3389/fpls.2013.00043

  • Nawrath, C., & Métraux, J. P. (1999). Salicylic acid induction–deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell, 11, 1393–1404.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Niu, J. S., Liu, R., & Zheng, L. (2007). Expression analysis of wheat PR-1, PR-2, PR-5 activated by Bgt and SA, and powdery mildew resistance. Journal of Triticeae Crops (China), 27, 1132–1137.

    CAS  Google Scholar 

  • Niu, J. S., Wang, B. Q., Wang, Y. H., Cao, A. Z., Qi, Z. J., & Shen, T. M. (2008). Chromosome location and microsatellite markers linked to a powdery mildew resistance gene in wheat line ‘Lankao 90 (6)’. Plant Breeding, 127, 346–349.

    Article  CAS  Google Scholar 

  • Park, S. W., Kaimoyo, E., Kumar, D., Mosher, S., & Klessig, D. F. (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 318, 113–116.

    Article  CAS  PubMed  Google Scholar 

  • Peña-Cortés, H., Barrios, P., Dorta, F., Polanco, V., Sánchez, C., Sánchez, E., & Ramírez, I. (2004). Involvement of jasmonic acid and derivatives in plant response to pathogen and insects and in fruit ripening. Journal of Plant Growth Regulation, 23, 246–260.

    Google Scholar 

  • Pozo, M. J., Van Loon, L. C., & Pieterse, C. M. (2004). Jasmonates-signals in plant-microbe interactions. Journal of Plant Growth Regulation, 23, 211–222.

    CAS  Google Scholar 

  • Ross, A. F. (1961). Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology, 14, 329–339.

    Article  CAS  PubMed  Google Scholar 

  • Schenk, P. M., Kazan, K., Wilson, I., Anderson, J. P., Richmond, T., Somerville, S. C., & Manners, J. M. (2000). Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences, 97, 11655–11660.

    Article  CAS  Google Scholar 

  • Schweizer, P., Gees, R., & Mosinger, E. (1993). Effect of jasmonic acid on the interaction of barley (Hordeum vulgare L.) with the powdery mildew Erysiphe graminis f. sp. hordei. Plant Physiology, 102, 503–511.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sels, J., Mathys, J., De Coninck, B., Cammue, B., & De Bolle, M. F. (2008). Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiology and Biochemistry, 46, 941–950.

    Article  CAS  PubMed  Google Scholar 

  • Shang, J., Xi, D. H., Xu, F., Wang, S. D., Cao, S., Xu, M. Y., Zhao, P. P., Wang, J. H., Jia, S. D., Zhang, Z. W., Yuan, S., & Lin, H. H. (2011). A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid. Planta, 233, 299–308.

    Article  CAS  PubMed  Google Scholar 

  • Spoel, S. H., Koornneef, A., Claessens, S. M., Korzelius, J. P., Van Pelt, J. A., Mueller, M. J., Buchala, A. J., Métraux, J. P., Brown, R., Kazan, K., Van Loon, L. C., & Pieterse, C. M. (2003). NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell, 15, 760–770.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Spoel, S. H., Johnson, J. S., & Dong, X. (2007). Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proceedings of the National Academy of Sciences, 104, 18842–18847.

    Article  CAS  Google Scholar 

  • Takahashi, H., Kanayama, Y., Zheng, M. S., Kusano, T., Hase, S., Ikegami, M., & Shah, J. (2004). Antagonistic interactions between the SA and JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus. Plant and Cell Physiology, 45, 803–809.

    Article  CAS  PubMed  Google Scholar 

  • Van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.

    Article  PubMed  Google Scholar 

  • Van Wees, S. C., De Swart, E. A., Van Pelt, J. A., Van Loon, L. C., & Pieterse, C. M. (2000). Enhancement of induced disease resistance by simultaneous activation of salicylate-and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 97, 8711–8716.

    Article  Google Scholar 

  • Vijayan, P., Shockey, J., Lévesque, C. A., & Cook, R. J. (1998). A role for jasmonate in pathogen defense of Arabidopsis. Proceedings of the National Academy of Sciences, 95, 7209–7214.

    Article  CAS  Google Scholar 

  • Walters, D., Cowley, T., & Mitchell, A. (2002). Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley seedlings. Journal of Experimental Botany, 53, 747–756.

    Article  CAS  PubMed  Google Scholar 

  • Zander, M., La Camera, S., Lamotte, O., Métraux, J. P., & Gatz, C. (2010). Arabidopsis thaliana class-II TGA transcription factors are essential activators of jasmonic acid/ethylene-induced defense responses. Plant Journal, 61, 200–210.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This project was supported by National 863 program (2012AA101105) and Henan key scientific and technological project (122101110200). We are grateful to the anonymous reviewers for their constructive comments on revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jishan Niu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Z., Lv, G., Shen, C. et al. The role of jasmonic acid signalling in wheat (Triticum aestivum L.) powdery mildew resistance reaction. Eur J Plant Pathol 140, 169–183 (2014). https://doi.org/10.1007/s10658-014-0453-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0453-2

Keywords

Navigation