Skip to main content
Log in

The influence of increasing temperature and CO2 on Fusarium crown rot susceptibility of wheat genotypes at key growth stages

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Despite recent reports advancing our understanding of climate change on plant diseases, uncertainty remains concerning how host and pathogen interactions are changed by increases in atmospheric carbon-dioxide (CO2) and temperature. This study has observed crown rot inoculated and non-inoculated plants in three glasshouse environments comprising ambient CO2 with ambient temperature (E1), elevated CO2 with ambient temperature (E2) and elevated CO2 with warm temperatures (E3). The proportion of crown rot infected tillers (incidence), length of stem browning (severity) and biomass of Fusarium pseudograminearum in 16 wheat genotypes was destructively assessed at node development, anthesis, soft dough and crop maturity. Mean incidence, severity and Fusarium biomass was greater in E2, and all three measurements increased at a faster rate across plant development stages; E1 showed the lowest mean incidence and severity. Incidence and severity at each development stage was dependent on the environment each genotype was grown. The influence of genotype on Fusarium biomass at each development stage however was not seen to be dependent on environment. Irrespective of genotype plants with greater severity or relative Fusarium biomass showed lower plant dry weight at crop maturity in all environments with exception to E3, where CR severity did not exert a cost to plant dry weight. These results may allude to plant maturity and temperature-dependent resistance as effective mechanisms in building resistance to crown rot. Regardless of temperature, if crown rot symptoms and Fusarium biomass are to increase at elevated CO2 there is potential for a loss in crop production capability while boosting inoculum in crop stubble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Asseng, S., Foster, I., & Turner, N. C. (2011). The impact of temperature variability on wheat yields. Global Change Biology, 17, 997–1012.

    Article  Google Scholar 

  • Baayen, R. H. (2011). languageR: Data sets and functions with “Analyzing Linguistic Data: A practical introduction to statistics”.

  • Backhouse, D., & Burgess, L. W. (2002). Climatic analysis of the distribution of Fusarium graminearum, F. pseudograminearum and F. culmorum on cereals in Australia. Australasian Plant Pathology, 31, 321–327.

    Article  Google Scholar 

  • Bates, D., Maechler, M., & Bolker, B. (2011). lme4: Linear mixed-effects models using S4 classes. In D. Bates (Ed.), lme4 (0.999375–42 ed.): Comprehensive R Archive Network.

  • Bender, J., Hertstein, U., & Black, C. R. (1999). Growth and yield responses of spring wheat to increasing carbon dioxide, ozone and physiological stresses: a statistical analysis ‘ESPACE-wheat’ results. European Journal of Agronomy, 10, 185–195.

    Article  Google Scholar 

  • Burgess, L. W., Backhouse, D., Summerell, B. A., & Swan, L. J. (2001). Crown rot of wheat (Fusarium: Paul E. Nelson Memorial Symposium). St. Paul: American Phytopathological Society.

  • Chakraborty, S. (2011). Climate change and plant diseases. Plant Pathology, 60, 1–1.

    Article  Google Scholar 

  • Chakraborty, S., Liu, C. J., Mitter, V., Scott, J. B., Akinsanmi, O. A., Ali, S., et al. (2006). Pathogen population structure and epidemiology are keys to wheat crown rot and Fusarium head blight management. Australasian Plant Pathology, 35, 643–655.

    Article  Google Scholar 

  • Chapman, S. C., Chakraborty, S., Dreccer, M. F., & Howden, S. M. (2012). Plant adaptation to climate change-opportunities and priorities in breeding. Crop & Pasture Science, 63, 251–268.

    Article  Google Scholar 

  • Craufurd, P. Q., & Wheeler, T. R. (2009). Climate change and the flowering time of annual crops. Journal of Experimental Botany, 60, 2529–2539.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, G. R. (2012). Climate change impact on crop growth and food production, and plant pathogens. Canadian Journal of Plant Pathology, 34, 362–379.

    Article  Google Scholar 

  • Eastburn, D. M., Degennaro, M. M., Delucia, E. H., Dermody, O., & McElrone, A. J. (2010). Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE. Global Change Biology, 16, 320–330.

    Article  Google Scholar 

  • Eastburn, D. M., McElrone, A. J., & Bilgin, D. D. (2011). Influence of atmospheric and climatic change on plant–pathogen interactions. Plant Pathology, 60, 54–69.

    Article  Google Scholar 

  • Ewert, F., & Pleijel, H. (1999). Phenological development, leaf emergence, tillering and leaf area index, and duration of spring wheat across Europe in response to CO2 and ozone. European Journal of Agronomy, 10, 171–184.

    Article  Google Scholar 

  • FAO (2011). Climate change and food security in the context of the Cancun agreements. http://www.fao.org/climatechange/en/: Food and Agriculture Organisation of the United Nations.

  • FAO (2013). FAO Cereal supply and demand brief. http://www.fao.org/worldfoodsituation/wfs-home/csdb/en/. Accessed 12 March 2013.

  • Fischer, R. A. (2011). Wheat physiology: a review of recent developments. Crop & Pasture Science, 62, 95–114.

    Article  Google Scholar 

  • GRDC (2011). Time of Sowing. In Grains Research and Development Corporation (Ed.), (March 2011 ed.): GRDC.

  • Hatfield, J. L., & Prueger, J. H. (2011). Agroecology: Implications for plant response to climate change. In Crop adaptation to climate change (pp. 27–43): Wiley-Blackwell.

  • Hibberd, J. M., Whitbread, R., & Farrar, J. F. (1996). Effect of elevated concentrations of CO2 on infection of barley by erysiphe graminis. Physiological and Molecular Plant Pathology, 48, 37–53.

    Article  CAS  Google Scholar 

  • Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. Biometrical Journal, 50, 346–363.

    Article  PubMed  Google Scholar 

  • IPCC (2007). Climate change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. Geneva Switzerland: Intergovernmental Panel on Climate Change (IPCC).

  • Juroszek, P., & von Tiedemann, A. (2013). Climate change and potential future risks through wheat diseases: a review. European Journal of Plant Pathology, 136, 21–33.

    Article  Google Scholar 

  • Kazan, K., Gardiner, D. M., & Manners, J. M. (2012). On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. Molecular Plant Pathology, 13, 399–413.

    Article  CAS  PubMed  Google Scholar 

  • Ko, J., Ahuja, L., Kimball, B., Anapalli, S., Ma, L. W., Green, T. R., et al. (2010). Simulation of free air CO2 enriched wheat growth and interactions with water, nitrogen, and temperature. Agricultural and Forest Meteorology, 150, 1331–1346.

    Article  Google Scholar 

  • Kobayashi, T., Ishiguro, K., Nakajima, T., Kim, H. Y., Okada, M., & Kobayashi, K. (2006). Effects of elevated atmospheric CO2 concentration on the infection of rice blast and sheath blight. Phytopathology, 96, 425–431.

    Article  CAS  PubMed  Google Scholar 

  • Lake, J. A., & Wade, R. N. (2009). Plant-pathogen interactions and elevated CO2: morphological changes in favour of pathogens. Journal of Experimental Botany, 60, 3123–3131.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lamari, L., & Bernier, C. C. (1994). Temperature induced resistance to Tan Spot Pyrenophora tritici repentis of wheat. Canadian Journal of Plant Pathology, 16, 279–286.

    Article  Google Scholar 

  • Lamprecht, S. C., Marasas, W. F. O., Hardy, M. B., & Calitz, F. J. (2006). Effect of crop rotation on crown rot and the incidence of Fusarium pseudograminearum in wheat in the Western Cape, South Africa. Australasian Plant Pathology, 35, 419–426.

    Article  Google Scholar 

  • Li, A. G., Hou, Y. S., Wall, G. W., Trent, A., Kimball, B. A., & Pinter, P. J. (2000). Free-air CO2 enrichment and drought stress effects on grain filling rate and duration in spring wheat. Crop Science, 40, 1263–1270.

    Article  Google Scholar 

  • Li, B., Peng, X., Wang, F., & Peng, R. (2001). High temperature induced resistance to Cladosporium cucumerinum in cucumbers. Acta Horticulturae Sinica, 28, 177–179.

    Google Scholar 

  • Li, X., Liu, C., Sukumar, C., Manners, J. M., & Kazan, K. (2008). A simple method for the assessment of crown rot disease severity in wheat seedlings inoculated with Fusarium pseudograminearum. Journal of Phytopathology, 156, 751–754.

    Article  Google Scholar 

  • Li, H. B., Xie, G. Q., Ma, J., Liu, G. R., Wen, S. M., Ban, T., et al. (2010). Genetic relationships between resistances to Fusarium head blight and crown rot in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 121, 941–950.

    Article  PubMed  Google Scholar 

  • Liu, S., Griffey, C. A., & Maroof, M. A. S. (2001). Identification of molecular markers associated with adult plant resistance to powdery mildew in common wheat cultivar Massey. Crop Science, 41, 1268–1275.

    Article  CAS  Google Scholar 

  • Long, S. P. (1991). Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant, Cell and Environment, 14, 729–739.

    Article  CAS  Google Scholar 

  • Manderscheid, R., Burkart, S., Bramm, A., & Weigel, H. J. (2003). Effect of CO2 enrichment on growth and daily radiation use efficiency of wheat in relation to temperature and growth stage. European Journal of Agronomy, 19, 411–425.

    Article  Google Scholar 

  • Manes, Y., Gomez, H. F., Puhl, L., Reynolds, M., Braun, H. J., & Trethowan, R. (2012). Genetic yield gains of the CIMMYT international semi-arid wheat yield trials from 1994 to 2010. Crop Science, 52, 1543–1552.

    Article  Google Scholar 

  • Matros, A., Amme, S., Kettig, B., Buck-Sorlin, G. H., Sonnewald, U., & Mock, H. P. (2006). Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus Y. Plant, Cell and Environment, 29, 126–137.

    Article  CAS  PubMed  Google Scholar 

  • Melloy, P., Hollaway, G., Luck, J. O., Norton, R. O. B., Aitken, E., & Chakraborty, S. (2010). Production and fitness of Fusarium pseudograminearum inoculum at elevated carbon dioxide in FACE. Global Change Biology, 16, 3363–3373.

    Article  Google Scholar 

  • Mendiburu, F. d. (2012). agricolae: statistical procedures for agricultural research. (Vol. R package version 1.1–3). http://CRAN.R-project.org/package=agricolae.

  • Miller, J. D., & Ewen, M. A. (1997). Toxic effects of deoxynivalenol on ribosomes and tissues of the spring wheat cultivars frontana and casavant. Natural Toxins, 5, 234–237.

    Article  CAS  PubMed  Google Scholar 

  • Murray, G. M., & Brennan, J. P. (2009). Estimating disease losses to the Australian wheat industry. Australasian Plant Pathology, 38, 558–570.

    Article  Google Scholar 

  • Nan, R., Carman, J. G., & Salisbury, F. B. (2002). Water stress, CO2 and photoperiod influence hormone levels in wheat. Journal of Plant Physiology, 159, 307–312.

    Article  CAS  PubMed  Google Scholar 

  • N.V. Trials (2013). http://www.nvtonline.com.au/. Accessed April, 2013.

  • Ortiz, R., Sayre, K. D., Govaerts, B., Gupta, R., Subbarao, G. V., Ban, T., et al. (2008). Climate change: can wheat beat the heat? Agriculture, Ecosystems & Environment, 126, 46–58.

    Article  Google Scholar 

  • Parry, D. W., Pettitt, T. R., Jenkinson, P., & Lees, A. K. (1994). The Cereal Fusarium Complex (Ecology of Plant Pathogens). Wallingford: CAB International.

    Google Scholar 

  • Pettitt, T. R., & Parry, D. W. (1996). Effects of climate change on Fusarium foot rot of winter wheat in the United Kingdom. In N. Magan & G. M. Gadd (Eds.), Fungi and Environmental Change (pp. 20–31). London: Cambridge University Press.

    Chapter  Google Scholar 

  • Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: convergence diagnosis and output analysis for MCMC. R News, 6, 7–11.

    Google Scholar 

  • Ruijter, J. M., Ramakers, C., Hoogaars, W. M. H., Karlen, Y., Bakker, O., van den Hoff, M. J. B., et al. (2009). Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Research, 37, e45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Savary, S., Nelson, A., Sparks, A. H., Willocquet, L., Duveiller, E., Mahuku, G., et al. (2011). International agricultural research tackling the effects of global and climate changes on plant diseases in the developing world. Plant Disease, 95, 1204–1216.

    Article  Google Scholar 

  • Smiley, R. W. (2009). Water and temperature parameters associated with winter wheat diseases caused by soilborne pathogens. Plant Disease, 93, 73–80.

    Article  Google Scholar 

  • Smiley, R. W., & Yan, H. (2009). Variability of Fusarium crown rot tolerances among cultivars of spring and winter wheat. Plant Disease, 93, 954–961.

    Article  Google Scholar 

  • Stephens, A. E., Gardiner, D. M., White, R. G., Munn, A. L., & Manners, J. M. (2008). Phases of infection and gene expression of Fusarium graminearum during crown rot disease of wheat. Molecular Plant-Microbe Interactions, 21, 1571–1581.

    Article  CAS  PubMed  Google Scholar 

  • Tans, P., & Keeling, R. (2013). Trends in atmospheric carbon dioxide. http://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed 4 July 2013.

  • The Royal Society, (2010). Climate change: Summary of Science. The Royal Society.

  • Tunali, B., Obanor, F., Erginbas, G., Westecott, R. A., Nicol, J., & Chakraborty, S. (2012). Fitness of three Fusarium pathogens of wheat. FEMS Microbiology Ecology, 81, 596–609.

    Article  CAS  PubMed  Google Scholar 

  • Uauy, C., Brevis, J. C., Chen, X. M., Khan, I., Jackson, L., Chicaiza, O., et al. (2005). High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theoretical and Applied Genetics, 112, 97–105.

    Article  CAS  PubMed  Google Scholar 

  • Webb, K. M., Ona, I., Bai, J., Garrett, K. A., Mew, T., Cruz, C. M. V., et al. (2010). A benefit of high temperature: increased effectiveness of a rice bacterial blight disease resistance gene. New Phytologist, 185, 568–576.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler, T. R., Batts, G. R., Ellis, R. H., Hadley, P., & Morison, J. I. L. (1996). Growth and yield of winter wheat (Triticum aestivum) crops in response to CO2 and temperature. Journal of Agricultural Science, 127, 37–48.

    Article  Google Scholar 

  • Wildermuth, G. B., & McNamara, R. B. (1994). Testing wheat seedlings for resistance to crown rot caused be Fusarium graminearum group 1. Plant Disease, 78, 949–953.

    Article  Google Scholar 

  • Yang, X. M., Ma, J., Li, H. B., Ma, H. X., Yao, J. B., & Liu, C. J. (2010). Different genes can be responsible for crown rot resistance at different developmental stages of wheat and barley. European Journal of Plant Pathology, 128, 495–502.

    Article  Google Scholar 

  • Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). Decimal code for growth stages of cereals. Weed Research, 14, 415–421.

    Article  Google Scholar 

  • Zheng, B. Y., Chenu, K., Dreccer, M. F., & Chapman, S. C. (2012). Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Global Change Biology, 18, 2899–2914.

    Article  PubMed  Google Scholar 

  • Ziska, L. H., Morris, C. F., & Goins, E. W. (2004). Quantitative and qualitative evaluation of selected wheat varieties released since 1903 to increasing atmospheric carbon dioxide: can yield sensitivity to carbon dioxide be a factor in wheat performance? Global Change Biology, 10, 1810–1819.

    Article  Google Scholar 

Download references

Acknowledgments

Research was undertaken with the support of a Co-investment from the Grains Research and Development Corporation and CSIRO Plant Industry. Technical assistance from Ross Perrott, Jessica Reid, Anca Rusu, Rosalie Sabburg and Kymberly Alexander was greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Melloy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 23 kb)

ESM 2

(DOCX 23 kb)

ESM 3

(DOCX 23 kb)

ESM 4

(DOCX 23 kb)

ESM 5

(DOCX 21 kb)

ESM 6

(DOCX 21 kb)

ESM 7

(DOCX 47 kb)

ESM 8

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melloy, P., Aitken, E., Luck, J. et al. The influence of increasing temperature and CO2 on Fusarium crown rot susceptibility of wheat genotypes at key growth stages. Eur J Plant Pathol 140, 19–37 (2014). https://doi.org/10.1007/s10658-014-0441-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0441-6

Keywords

Navigation