Skip to main content
Log in

Chlorophyll fluorescence for quantification of fungal foliar infection and assessment of the effectiveness of an induced systemic resistance activator

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Chlorophyll fluorescence imaging was used to follow infections of Nicotiana benthamiana with the hemibiotrophic fungus, Colletotrichum orbiculare. Based on Fv/Fm images, infected leaves were divided into: healthy tissue with values similar to non-inoculated leaves; water-soaked/necrotic tissue with values near zero; and non-necrotic disease-affected tissue with intermediate values, which preceded or surrounded water-soaked/necrotic tissue. Quantification of Fv/Fm images showed that there were no changes until late in the biotrophic phase when spots of intermediate Fv/Fm appeared in visibly normal tissue. Those became water-soaked approx. 24 h later and then turned necrotic. Later in the necrotrophic phase, there was a rapid increase in affected and necrotic tissue followed by a slower increase as necrotic areas merged. Treatment with the induced systemic resistance activator, 2R, 3R-butanediol, delayed affected and necrotic tissue development by approx. 24 h. Also, the halo of affected tissue was narrower indicating that plant cells retained a higher photosystem II efficiency longer prior to death. While chlorophyll fluorescence imaging can reveal much about the physiology of infected plants, this study demonstrates that it is also a practical tool for quantifying hemibiotrophic fungal infections, including affected tissue that is appears normal visually but is damaged by infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aro, E. M., Virgin, I., & Anderson, B. (1994). Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta, 1143, 113–134.

    Article  Google Scholar 

  • Baker, N. R. (2008). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 80–113.

    Article  Google Scholar 

  • Balachandran, S., Osmond, C. B., & Daley, P. F. (1994). Diagnosis of earliest strain-specific interactions between tobacco mosaic virus and chloroplasts of tobacco leaves in vivo by means of chlorophyll fluorescence imaging. Plant Physiology, 104, 1059–1065.

    PubMed  CAS  Google Scholar 

  • Barriuso, J., Ramos, S. B., & Gutierrez, M. F. J. (2008). Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology, 98, 666–673.

    Article  PubMed  CAS  Google Scholar 

  • Berger, S., Papadopolous, M., Schreiber, U., Kaiser, W., & Roitsch, T. (2004). Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum, 122, 419–428.

    Article  CAS  Google Scholar 

  • Berger, S., Benediktyova, Z., Matous, K., Bonfig, K., Mueller, M. J., Nedbal, L., & Roitsch, T. (2007). Visualization of dynamics of plant-pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of P. syringae and of oxylipins on A. thaliana. Journal of Experimental Botany, 58, 797–806.

    Article  PubMed  CAS  Google Scholar 

  • Berger, S., Sinha, A. K., & Roitsch, T. (2007). Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interactions. Journal of Experimental Botany, 58, 4019–4026.

    Article  PubMed  CAS  Google Scholar 

  • Bjorkman, O., & Demmig, B. (1987). Photon yield on O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170, 489–504.

    Article  Google Scholar 

  • Bonfig, K. B., Schreiber, U., Gabler, A., Roitsch, T., & Berger, S. (2006). Infection with virulent and avirulent P. syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta, 225, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Chaerle, L., Hagenbeek, D., De Bruyne, E., Valcke, R., & Van Der Straeten, D. (2004). Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant & Cell Physiology, 45, 887–896.

    Article  CAS  Google Scholar 

  • Chaerle, L., Hagenbeek, D., Vanrobaeys, X., & Van Der Straeten, D. (2007). Early detection of nutrient and biotic stress in Phaseolus vulgaris. International Journal of Remote Sensing, 28, 3479–3492.

    Article  Google Scholar 

  • Chou, H. M., Bundock, N., Rolfe, S. A., & Scholes, J. D. (2000). Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism. Molecular Plant Pathology, 1, 99–113.

    Article  PubMed  CAS  Google Scholar 

  • Conroy, J. P., Smillie, R. M., Kuppers, M., Bevege, D. I., & Barlow, E. W. (1986). Chlorophyll a fluorescence and photosynthetic and growth responses of Pinus radiate to phosphorus deficiency, drought stress, and high CO2. Plant Physiology, 81, 423–429.

    Article  PubMed  CAS  Google Scholar 

  • Cortes-Barco, A. M., Goodwin, P. H., & Hsiang, T. (2010). A comparison of induced resistance activated by benzothiadiazole, (2R, 3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathology, 59, 643–653.

    Article  CAS  Google Scholar 

  • Daley, P. F., Raschke, K., Ball, J. T., & Berry, J. (1989). Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence. Plant Physiology, 90, 1233–1238.

    Article  PubMed  CAS  Google Scholar 

  • Dean, J., Goodwin, P. H., & Hsiang, T. (2005). Induction of glutathione S-transferase genes of Nicotiana benthamiana following infection by Colletotrichum destructivum and C. orbiculare and involvement of one in resistance. Journal of Experimental Botany, 56, 1525–1533.

    Article  PubMed  CAS  Google Scholar 

  • Duraes, F.O.M., Gama, E.E.G., Magalhaes, P.C., Marriel, I.E., Casela, C.R., Oliveira, A.C., Luchiari Junior, A., & Shanahan, J.F. (2001). The usefulness of chlorophyll fluorescence in screening for disease resistance, water stress tolerance, aluminium toxicity tolerance, and N use efficiency in maize. Seventh Eastern and Southern Africa Regional Maize Conference, (pp. 356–360).

  • Duyens, L. N. M., & Sweers, H. E. (1963). Mechanisms of two photochemical reactions in algae as studied by means of fluorescence. In H. Tamiya (Ed.), Studies on microalgae and photosynthetic bacteria (pp. 353–372). Tokyo: University of Tokyo Press.

    Google Scholar 

  • Ehness, R., Ecker, M., Godt, D. E., & Roitsch, T. (1997). Glucose and stress independently regulate source and sink metabolism and defense mechanisms via signal transduction pathways involving protein phosphorylation. The Plant Cell, 9, 1825–1841.

    PubMed  CAS  Google Scholar 

  • Fiorani, F., Rascher, U., Jahnke, S., & Schurr, U. (2012). Imaging plant dynamics in heterogeneous environments. Current Opinion in Biotechnology, 23, 227–235.

    Article  PubMed  CAS  Google Scholar 

  • Hennessey, T. L., Freeden, A. L., & Field, C. B. (1993). Environmental effects on circadian rhythms in photosynthesis and stomatal opening. Planta, 189, 369–376.

    Article  CAS  Google Scholar 

  • Mahlein, A. M., Oerke, E. C., Steiner, U., & Dehne, H. W. (2012). Recent advances for sensing plant disease for precision crop protection. European Journal of Plant Pathology, 133, 197–209.

    Article  CAS  Google Scholar 

  • Manandhar, J. B., Hartman, G. L., & Sinclair, J. B. (1986). Colletotrichum destructivum, the anamorph of Glomerella glycines. Phytopathology, 76, 282–285.

    Article  Google Scholar 

  • McRae, C. F., & Stevens, G. R. (1990). Role of conidial matrix of Colletotrichum orbiculare in pathogenesis of Xanthium spinosum. Mycological Research, 94, 890–896.

    Article  Google Scholar 

  • Meyer, S., Saccardy-Adji, K., Rizza, F., & Genty, B. (2001). Inhibition of photosynthesis by Colletotrichum lindemuthanium in bean leaves determined by chlorophyll fluorescence imaging. Plant, Cell & Environment, 24, 947–955.

    Article  CAS  Google Scholar 

  • Muller, P., Li, X. P., & Niyogi, K. K. (2001). Non-photochemical quenching. A response to excess light energy. Plant Physiology, 125, 1558–1566.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Bueno, M. L., Ciscato, M., van de Ven, M., Garcia-Luque, I., Valcke, R., & Baron, M. (2006). Imaging viral infection: studies on Nicotiana benthamiana plants infected with the pepper mild mottle tobamovirus. Photosynthesis Research, 90, 111–123.

    Article  PubMed  CAS  Google Scholar 

  • Perfect, S. E., Bleddyn Hughes, H., O’Connell, R. J., & Green, J. R. (1999). Colletotrichum: A model genus for studies on pathology and fungal-plant interactions. Fungal Genetics and Biology, 27, 186–198.

    Article  PubMed  CAS  Google Scholar 

  • Prusky, D., Freeman, S., & Dickman, M. (2000). Colletotrichum: Host Specificity, Pathology, and Host-Pathogen Interaction. St. Paul: American Phytopathological Society Press.

    Google Scholar 

  • Rodriguez-Moreno, L., Pineda, M., Soukupova, J., Macho, A. P., Beuzon, C. R., Baron, M., & Ramos, C. (2008). Early detection of bean infection by Pseudomonas syringae in asymptomatic leaf areas using chlorophyll fluorescence imaging. Photosynthesis Research, 96, 27–35.

    Article  PubMed  CAS  Google Scholar 

  • Rolfe, S. A., & Scholes, J. D. (2010). Chlorophyll fluorescence imaging of plant-pathogen interactions. Protoplasma, 247, 163–175.

    Article  PubMed  CAS  Google Scholar 

  • Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wei, H. X., Pare, P. W., & Kloepper, J. W. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 100, 4927–4932.

    Article  PubMed  CAS  Google Scholar 

  • Scholes, J. D., & Rolfe, S. A. (1996). Photosynthesis in localized regions of oat leaves infected with crown rust (Puccinia coronata): quantitative imaging of chlorophyll fluorescence. Planta, 199, 573–582.

    Article  CAS  Google Scholar 

  • Scholes, J. D., Lee, P. J., Horton, P., & Lewis, D. H. (1994). Invertase: understanding changes in the photosynthetic and carbohydrate metabolism of barley leaves infected with powdery mildew. New Phytologist, 126, 213–222.

    Article  CAS  Google Scholar 

  • Schreiber, U., Schliwa, U., & Bilger, W. (1986). Continuous recording of photochemical and nonphotochemical fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research, 10, 51–62.

    Article  CAS  Google Scholar 

  • Shen, S., Goodwin, P. H., & Hsiang, T. (2001). Infection of Nicotiana species by the anthracnose fungus Colletotrichum orbiculare. European Journal of Plant Pathology, 107, 767–773.

    Article  Google Scholar 

  • Swarbrick, P. J., Schultze-Lefert, P., & Scholes, J. D. (2006). Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant, Cell & Environment, 29, 1061–1076.

    Article  CAS  Google Scholar 

  • Thompson, D. C., & Jenkins, S. F. (1985). Pictorial assessment key to determine fungicide concentrations that control anthracnose development on cucumber cultivars with varying resistance levels. Plant Disease, 69, 833–836.

    Article  Google Scholar 

  • Verhagen, B. W. M., Glazebrook, J., Zhu, T., Chang, H. S., Van Loon, L. C., & Pieterse, C. M. J. (2004). The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Molecular Plant-Microbe Interactions, 17, 895–908.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Ohara, Y., Nakayashiki, H., Tosa, Y., & Mayama, S. (2005). Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Molecular Plant-Microbe Interactions, 18, 385–396.

    Article  PubMed  CAS  Google Scholar 

  • Wijekoon, C. P., Goodwin, P. H., & Hsiang, T. (2008). Quantifying fungal infection of plant leaves by digital image analysis using Scion Image software. Journal of Microbiological Methods, 74, 94–101.

    Article  PubMed  CAS  Google Scholar 

  • Wijesundera, R. L. C., Bailey, J. A., Byrde, R. J. W., & Fielding, A. H. (1989). Cell wall degrading enzymes of Colletotrichum lindemuthianum: their role in the development of bean anthracnose. Physiological and Molecular Plant Pathology, 34, 403–413.

    Article  CAS  Google Scholar 

  • Xie, W., & Goodwin, P. H. (2009). A PRp27 gene of Nicotiana benthamiana contributes to resistance to Pseudomonas syringae pv. tabaci but not to Colletotrichum destructivum or Colletotrichum orbiculare. Functional Plant Biology, 36, 351–361.

    Article  CAS  Google Scholar 

  • Xie, W., Hao, L., & Goodwin, P. H. (2008). Role of xyloglucan-specific endo-β-1,4-glucanase inhibitor in the interactions of Nicotiana benthamiana with Colletotrichum destructivum. C. orbiculare or Pseudomonas syringae pv. tabaci. Molecular Plant Pathology, 9, 191–202.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Xie, X., Kim, M. S., Kornyeyev, D. A., Holaday, S., & Pare, P. W. (2008). Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid level in planta. The Plant Journal, 56, 264–273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. H. Goodwin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 53 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tung, J., Goodwin, P.H. & Hsiang, T. Chlorophyll fluorescence for quantification of fungal foliar infection and assessment of the effectiveness of an induced systemic resistance activator. Eur J Plant Pathol 136, 301–315 (2013). https://doi.org/10.1007/s10658-012-0164-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-0164-5

Keywords

Navigation