Skip to main content

Advertisement

Log in

Sugar beet extract induces defence against Phytophthora infestans in potato plants

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The aim of this study was to find a natural and cheap agent that could induce defence responses in potato plants to combat Phytophthora infestans, which causes late blight disease that is one of the most devastating plant pathogens in agriculture. We tested whether a sugar beet extract (SBE), derived through a simple extraction procedure from a large-scale plant waste product, induced resistance under green-house conditions. In three potato genotypes differing in their level of resistance to P. infestans (two susceptible genotypes: Desiree and Bintje and one partially resistant: Ovatio), treatment with SBE resulted in significant reduction of the size of the infection lesions in a pattern similar to that seen with application of a known defence-inducing compound, β-aminobutyric acid (BABA). Lower sporangial production was also observed on SBE-treated leaves, but the reduction in sporangial production was more pronounced after BABA treatment. SBE had no apparent toxic effect on the hyphal growth of the pathogen or on the germination of sporangia. Instead, SBE triggered pathogenesis-related protein (PR-1 and PR-2) induction which suggests that the protection conferred by SBE could be via induced resistance. An array of phenolic metabolites was found in the SBE that may contribute to the defence response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BABA:

β-aminobutyric acid

Dpi:

Days post inoculation

IPM:

Integrated pest management

PAMP:

Pathogen-associated molecular patterns

PR-1 protein:

Pathogenesis-related protein 1

SBE:

Sugar beet extract

SDS-PAGE:

Sodium dodecyl sulphate polyacrylamide gel electrophoresis

References

  • Beckers, G. J. M., & Conrath, U. (2007). Priming for stress resistance: from the lab to the field. Current Opinion in Plant Biology, 10, 425–431.

    Article  PubMed  Google Scholar 

  • Boller, T., & Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–406.

    Article  PubMed  CAS  Google Scholar 

  • Boubakri, H., Wahab, M. A., Chong, J., Bertsch, C., Mliki, A., & Soustre-Gacougnolle, I. (2012). Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host-defense responses, including HR like-cell death. Plant Physiology and Biochemistry, 57, 120–133.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, Y. (1994). Local and systemic control of Phytophthora infestans in tomato plants by DL-3-amino-n-butanoic acids. Phytopathology, 84, 55–59.

    Article  CAS  Google Scholar 

  • Cohen, Y. (2002). β-Aminobutyric acid induced resistance against plant pathogens. Plant Disease, 86, 448–457.

    Article  CAS  Google Scholar 

  • Curtis, H., Noll, U., Stormann, J., & Slusarenko, A. (2004). Broad-spectrum activity of the volatile phytoanticipin allicin in extracts of garlic (L.) against plant pathogenic bacteria, fungi and oomycetes. Physiological and Molecular Plant Pathology, 65, 79–89.

    Article  CAS  Google Scholar 

  • Deepak, S. A., Niranjan, R. S., Umemura, K., Kono, T., & Shetty, H. S. (2003). Cerebroside as an elicitor for induced resistance against the downy mildew pathogen in pearl millet. Annals of Applied Biology, 143, 169–173.

    Article  CAS  Google Scholar 

  • Devaiah, S. P., Mahadevappa, G. H., & Shetty, H. S. (2009). Induction of systemic resistance in pearl millet (Pennisetum glaucum) against downy mildew (Sclerospora graminicola) by Datura metel extract. Crop Protection, 28, 783–791.

    Article  Google Scholar 

  • Fought, L., & Kuć, J. A. (1996). Lack of specificity in plant extracts and chemicals as inducers of systemic resistance in cucumber plants to anthracnose. Journal of Phytopathology, 144, 1–6.

    Article  CAS  Google Scholar 

  • Fry, W. (2008). Phytophthora infestans: the plant (and R gene) destroyer. Molecular Plant Pathology, 9, 385–402.

    Article  PubMed  Google Scholar 

  • Gust, A., Brunner, F., & Nürnberger, T. (2010). Biotechnological concepts for improving plant innate immunity. Current Opinion in Biotechnology, 21, 204–210.

    Article  PubMed  CAS  Google Scholar 

  • Jakab, G., Ton, J., Flors, V., Zimmerli, L., Metraux, J. P., & Mauch-Mani, B. (2005). Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiology, 139, 267–274.

    Article  PubMed  CAS  Google Scholar 

  • Jeun, Y. C., Siegrist, J., & Buchnauer, H. (2000). Biochemical and cytological studies on mechanisms of systemically induced resistance to Phytophthora infestans in tomato plants. Journal of Phytopathology, 148, 129–140.

    CAS  Google Scholar 

  • Kashiwagi, K., Furuno, N., Kitamura, S., Ohta, S., Sugihara, K., Utsumi, K., Hanada, H., Taniguchi, K., Suzuki, K., & Kashiwagi, A. (2008). Disruption of thyroid hormone function by environmental pollutants. Journal of Health Science, 55, 147–160.

    Article  Google Scholar 

  • Kuć, J. (2001). Concepts and direction of induced systemic resistance in plants and its application. European Journal of Plant Pathology, 107, 7–12.

    Google Scholar 

  • Langer, P., Koćan, A., Tajtáková, M., Trnovec, T., & Klimes, I. (2009). What we learned from the study of exposed population to PCBs and pesticides. The Open Environmental Pollution and Toxicology Journal, 1, 54–65.

    Article  CAS  Google Scholar 

  • Liljeroth, E., Bengtsson, T., Wiik, L., & Andreasson, E. (2010). Induced resistance in potato to Phytphthora infestans - effects of BABA in greenhouse and field tests with different potato varieties. European Journal of Plant Pathology, 127, 171–183.

    Article  CAS  Google Scholar 

  • Martín, J. A., Solla, A., Witzell, J., Gil, L., & Garcia-Vallejo, M. C. (2010). Antifungal effect and reduction of Ulmus minor symptoms to Ophiostoma novo-ulmi by carvacrol and salicylic acid. European Journal of Plant Pathology, 127, 21–32.

    Article  Google Scholar 

  • Postel, S., & Kemmerling, B. (2009). Plant systems for recognition of pathogen-associated molecular patterns. Seminars in Cell & Developmental Biology, 20, 1025–1031.

    Article  CAS  Google Scholar 

  • Röhner, E., Carabet, A., & Buchenauer, H. (2004). Effectiveness of plant extracts of Paeonia suffruticosa and Hedera helix against diseases caused by Phytophthora infestans in tomato and Pseudoperonospora cubensis in cucumber. Journal of Plant Diseases and Protection, 111, 83–95.

  • Sharma, K., Butz, A. F., & Finckh, M. R. (2010). Effects of host and pathogen genotypes on inducibility of resistance in tomato (Solanum lycopersicum) to Phytophthora infestans. Plant Pathology, 59, 1062–1071.

    Article  Google Scholar 

  • Slusarenko, A. J., Patel, A., & Portz, D. (2008). Control of plant diseases by natural products: Allicin from garlic as a case study. European Journal of Plant Pathology, 121, 313–322.

    Article  Google Scholar 

  • Soylu, E. M., Soylu, S., & Kurt, S. (2006). Antimicrobial activities of the essential oils of various plants against tomato late blight disease agent Phytophthora infestans. Mycopathologia, 161, 119–128.

    Article  PubMed  CAS  Google Scholar 

  • Stephan, D., Schmitt, A., Carvalho, M., Seddon, B., & Koch, E. (2005). Evaluation of biocontrol preparations and plant extracts for the control of Phytophthora infestans on potato leaves. European Journal of Plant Pathology, 112, 235–246.

    Article  Google Scholar 

  • Thuerig, B., Binder, A., Boller, T., Guyer, U., Jiménez, S., Rentsch, C., & Tamm, L. (2006). An aqueous extract of the dry mycelium of Penicillium chrysogenum induces resistance in several crops under controlled and field conditions. European Journal of Plant Pathology, 114, 185–197.

    Article  Google Scholar 

  • Unger, C., Wilhelm, I., Jünger, R., & Thalmann, R. (2006). Evidence of induced resistance of tomato plants against Phytophthora infestans by a water extract of dried biomass of Penicillium chrysogenum. Journal of Plant Diseases and Protection, 113, 1–9.

    Google Scholar 

  • Van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.

    Article  PubMed  Google Scholar 

  • Walters, D. R., & Fountaine, J. M. (2009). Practical application of induced resistance to plant diseases: an appraisal of effectiveness under field conditions. The Journal of Agricultural Science, 147, 523–535.

    Article  CAS  Google Scholar 

  • Walters, D., Walsh, D., Newton, A., & Lyon, G. (2005). Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. Phytopathology, 95, 1368–1373.

    Article  PubMed  CAS  Google Scholar 

  • Widmer, T. L., & Laurent, N. (2006). Plant extracts containing caffeic acid and rosmarinic acid inhibit zoospore germination of Phytophthora spp. pathogenic to Theobroma cacao. European Journal of Plant Pathology, 115, 377–388.

    Article  CAS  Google Scholar 

  • Wu, C. C., Singh, P., Chen, M. C., & Zimmerli, L. (2010). L-Glutamine inhibits beta-aminobutyric acid-induced stress resistance and priming in Arabidopsis. Journal of Experimental Botany, 61, 995–1002.

    Article  PubMed  CAS  Google Scholar 

  • Yang, L., Zambrano, Y., Hu, C.-J., Carmona, E. R., Bernal, A., Pérez, A., Zayas, C. M., Li, Y.-R., Guerra, A., Santana, I., & Arencibia, A. D. (2010). Sugarcane metabolites produced in CO2-rich temporary immersion bioreactors (TIBs) induce tomato (Solanum lycopersicum) resistance against bacterial wilt (Ralstonia solanacearum). In vitro cellular and developmental biology-Plant, 46, 558–568.

Download references

Acknowledgements

We thank the Swedish Foundation for Strategic Research (SSF) and the Swedish Research Council for Environment, Agricultural Sciences, and Spatial Planning (FORMAS) for financial support, Mia Mogren for excellent technical help and William Walker for manuscript review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Andreasson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moushib, L.I., Witzell, J., Lenman, M. et al. Sugar beet extract induces defence against Phytophthora infestans in potato plants. Eur J Plant Pathol 136, 261–271 (2013). https://doi.org/10.1007/s10658-012-0160-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-012-0160-9

Keywords

Navigation