Skip to main content
Log in

Proteomic analysis of a compatible interaction between Pisum sativum (pea) and the downy mildew pathogen Peronospora viciae

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

A proteomic approach was used to identify host proteins altering in abundance during Peronospora viciae infection of a susceptible cultivar of pea (Pisum sativum cv. Livioletta). Proteins were extracted from fully developed pea leaflets at 4 days post-inoculation, before visible symptoms were apparent. Cytoplasmic proteins and membrane- and nucleic acid-associated proteins from infected and control leaves were examined using two-dimensional difference gel electrophoresis. The majority of proteins had a similar abundance in control and infected leaves; however, several proteins were altered in abundance and twelve were found to have increased significantly in the latter. These proteins were selected for either matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry or electro-spray ionisation quadrupole time-of-flight tandem mass spectrometry analysis following trypsin digestion, with sequence identity being assigned to eight of the proteins. These included the ABR17 stress-response protein, the pathogen-induced PI176 protein, three photosynthetic proteins, a glycine-rich RNA binding protein and two glyceraldehyde 3-phosphate dehydrogenases (cytosolic and chloroplastic) which can be induced by a range of abiotic and biotic stresses in many plant species. The possible roles of these proteins in the response of the pea plant during P. viciae infection are discussed. This study represents the first proteomic analysis of downy mildew infection of pea leaves, and provides the basis for further work to elucidate molecular mechanisms of compatibility in P. viciae infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2-D DIGE:

two-dimensional difference gel electrophoresis

dpi:

days post-inoculation

ESI Q-TOF MS/MS:

electro-spray ionisation quadrupole time-of-flight tandem mass spectrometry

GAPDH:

glyceraldehyde 3-phosphate dehydrogenase

MALDI-TOF MS:

matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry

References

  • Amey, R. C., & Spencer-Phillips, P. T. N. (2006). Towards developing diagnostics for downy mildew diseases. Outlooks on Pest Management, 17, 4–8.

    Google Scholar 

  • Aneeta Sanan-Mishra, N., Tuteja, N., & Sopory, S. K. (2002). Salinity- and ABA-induced up-regulation and light-mediated modulation of mRNA encoding glycine-rich RNA-binding protein from Sorghum bicolor. Biochemical and Biophysical Research Communications, 296, 1063–1068.

    Article  Google Scholar 

  • Bantignies, B., Seguin, J., Muzac, I., Dedaldechamp, F., Gulick, P., & Ibrahim, R. (2000). Direct evidence of ribonucleolytic activity of a PR-10-like protein from white lupin roots. Plant Molecular Biology, 42, 871–881.

    Article  PubMed  CAS  Google Scholar 

  • Baudo, M. M., Meza-Zepeda, L. A., Palva, E. T., & Heino, P. (1999). Isolation of a cDNA corresponding to a low temperature- and ABA-responsive gene encoding a putative glycine-rich RNA-binding protein from Solanum commersonii. Journal of Experimental Botany, 50, 1867–1868.

    Article  CAS  Google Scholar 

  • Beranova-Giorgianni, S. (2003). Proteome analysis by two-dimensional gel electrophoresis and mass spectrometry: strengths and limitations. Trends in Analytical Chemistry, 22, 273–281.

    Article  CAS  Google Scholar 

  • Bergeron, D., Beauseigle, D., & Bellemare, G. (1993). Sequence and expression of a gene encoding a protein with RNA-binding and glycine-rich domains in Brassica napus. Biochimica et Biophysica Acta, 1216, 123–125.

    PubMed  CAS  Google Scholar 

  • Bestel-Corre, G., Dumas-Gaudot, E., Poinsot, V., Dieu, M., Dierick, J. F., van Tuinen, D., et al. (2002). Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn. by two-dimensional electrophoresis and mass spectrometry. Electrophoresis, 23, 122–137.

    Article  PubMed  CAS  Google Scholar 

  • Beyer, K., Jiménez, S., Randall, T. A., Lam, S., Binder, A., Boller, T., et al. (2002). Characterization of Phytophthora infestans genes regulated during the interaction with potato. Molecular Plant Pathology, 3, 473–485.

    Article  CAS  Google Scholar 

  • Biesiadka, J., Bujacz, G., Sikorski, M. M., & Jaskolski, M. (2002). Crystal structures of two homologous pathogenesis-related proteins from yellow lupine. Journal of Molecular Biology, 319, 1223–1234.

    Article  PubMed  CAS  Google Scholar 

  • Carpenter, C. D., Kreps, J. A., & Simon, A. E. (1994). Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiology, 104, 1015–1025.

    Article  PubMed  CAS  Google Scholar 

  • Castillejo, M. Á., Amiour, N., Dumas-Gaudot, E., Rubiales, D., & Jorrín, J. V. (2004). A proteomic approach to studying plant response to crenate broomrape (Orobanche crenata) in pea (Pisum sativum). Phytochemistry, 65, 1817–1828.

    Article  Google Scholar 

  • Chang, M. M., Chiang, C. C., Martin, M. W., & Hadwiger, L. A. (1993). Expression of a pea disease resistance response gene in the potato cultivar Shepody. American Potato Journal, 70, 635–647.

    Article  Google Scholar 

  • Chivasa, S., Ndimba, B. K., Simon, W. J., Robertson, D., Yu, X. L., Knox, J. P., et al. (2002). Proteomic analysis of the Arabidopsis thaliana cell wall. Electrophoresis, 23, 1754–1765.

    Article  PubMed  CAS  Google Scholar 

  • Chuisseu Wandji, J. L., Amey, R. C., Butt, E., Harrison, J., Macdonald, H., & Spencer-Phillips, P. T. N. (2007). Towards proteomic analysis of Peronospora viciae conidiospores. In A. Lebeda, & P. T. N. Spencer-Phillips (Eds.), Advances in Downy Mildew Research (vol. 3, pp. 95–100). Kostelec na Hane (Czech Republic): Palacky University in Olomouc and JOLA.

    Google Scholar 

  • Clark, J. S. C., & Spencer-Phillips, P. T. N. (2000). Downy Mildews. In J. Lederberg, M. Alexander, B. R. Bloom, D. Hopwood, R. Hull, B. H. Inglearski, A. I. Laskia, S. G. Oliver, M. Schaechter, & W. C. Summers (Eds.), Encyclopaedia of microbiology (vol. 2, pp. 117–129). San Diego: Academic.

    Google Scholar 

  • Clark, J. S. C., & Spencer-Phillips, P. T. N. (2004). The compatible interaction in downy mildew infections. In P. T. N. Spencer-Phillips, & M. J. Jeger (Eds.), Advances in downy mildew research (vol. 2, pp. 1–34). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Colditz, F., Nyamsuren, O., Niehaus, K., Eubel, H., Braun, H-P., & Krajinski, F. (2004). Proteomic approach: identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches. Plant Molecular Biology, 55, 109–120.

    Article  PubMed  CAS  Google Scholar 

  • Corbett, M., Virtue, S., Bell, K., Birch, P., Burr, T., Hyman, L., et al. (2005). Identification of a new quorum-sensing-control led virulence factor in Erwinia carotovora subsp. atroseptica secreted via the type II targeting pathway. Molecular Plant-Microbe Interactions, 18, 334–342.

    Article  PubMed  CAS  Google Scholar 

  • Coulthurst, S. J., Lilley, K. S., & Salmond, G. P. C. (2006). Genetic and proteomic analysis of the role of luxS in the enteric phytopathogen, Erwinia carotovora. Molecular Plant Pathology, 7, 31–45.

    Article  CAS  Google Scholar 

  • Curto, M., Camafeita, E., Lopez, J. A., Maldonado, A. M., Rubiales, D., & Jorrín, J. V. (2006). A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Erysiphe pisi). Proteomics, 6, S163–S174.

    Article  PubMed  Google Scholar 

  • Dangl, J. L., & Jones, J. D. G. (2001). Plant pathogens and integrated defence responses to infection. Nature, 411, 826–833.

    Article  PubMed  CAS  Google Scholar 

  • Djordjevic, M. A., Chen, H. C., Netera, S., Van Noorden, G., Menzel, C., Taylor, S., et al. (2003). A global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation. Molecular Plant-Microbe Interactions, 16, 508–524.

    Article  PubMed  CAS  Google Scholar 

  • Dubos, C., & Plomion, C. (2001). Drought differentially affects expression of a PR-10 protein in needles of maritime pine (Pinus pinaster Ait.) seedlings. Journal of Experimental Botany, 52, 1143–1144.

    Article  PubMed  CAS  Google Scholar 

  • Ebstrup, T., Saalbach, G., & Egsgaard, H. (2005). A proteomics study of in vitro cyst germination and appressoria formation in Phytophthora infestans. Proteomics, 5, 2839–2848.

    Article  PubMed  CAS  Google Scholar 

  • El-Gariani, N. K., & Spencer-Phillips, P. T. N. (2004). Isolation of viable Peronospora viciae hyphae from infected Pisum sativum leaves and accumulation of nutrients in vitro. In P. T. N. Spencer-Phillips, & M. J. Jeger (Eds.), Advances in downy mildew research: Volume 2 (pp. 249–264). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Fristensky, B., Horovitz, D., & Hadwiger, L. A. (1988). cDNA sequences for pea disease resistance response genes. Plant Molecular Biology, 11, 713–715.

    Article  CAS  Google Scholar 

  • Geri, C., Cecchini, E., Giannakou, M. E., Covey, S. N., & Milner, J. J. (1999). Altered patterns of gene expression in Arabidopsis elicited by Cauliflower mosaic virus (CaMV) infection and by a CaMV gene VI transgene. Molecular Plant–Microbe Interactions, 12, 377–384.

    Article  PubMed  CAS  Google Scholar 

  • Giavalisco, P., Nordhoff, E., Lehrach, H., Gobom, J., & Klose, J. (2003). Extraction of proteins from plant tissues for two-dimensional electrophoresis analysis. Electrophoresis, 24, 207–216.

    Article  PubMed  CAS  Google Scholar 

  • Gomez, J., Sanchez-Martinez, D., Stiefel, V., Rigau, J., Puigdomènech, P., & Pagès, M. (1988). A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature, 344, 262–264.

    Article  Google Scholar 

  • Grenville-Briggs, L. J., Avrova, A. O., Bruce, C. R., Williams, A., Whisson, S. C., Birch, P. R. J., et al. (2005). Elevated amino acid biosynthesis in Phytophthora infestans during appressorium formation and potato infection. Fungal Genetics and Biology, 42, 244–256.

    Article  PubMed  CAS  Google Scholar 

  • Gygi, S. P., Rochon, Y., Franza, B. R., & Abersold, R. (1999). Correlation between protein and mRNA abundance in yeast. Molecular Cell Biology, 19, 1720–1730.

    CAS  Google Scholar 

  • Hancock, J. T., Henson, D., Nyirenda, M., Desikan, R., Harrison, J., Lewis, M., et al. (2005). Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiology and Biochemistry, 43, 828–835.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins, W. G., & Hüner, N. P. A. (2004). Introduction to plant physiology. New York: Wiley.

    Google Scholar 

  • Kamoun, S., Hraber, P., Sobral, B., Nuss, D., & Govers, F. (1999a). Initial assessment of gene diversity for the oomycete pathogen Phytophthora infestans based on expressed sequences. Fungal Genetics and Biology, 28, 94–106.

    Article  PubMed  CAS  Google Scholar 

  • Kamoun, S., Huitema, E., & Vleeshouwers, V. G. A. A. (1999b). Resistance to oomycetes: a general role for the hypersensitive response. Trends in Plant Science, 4, 196–200.

    Article  PubMed  Google Scholar 

  • Kav, N. N. V., Srivastava, S., Goonewardene, L., & Blade, S. F. (2004). Proteome-level changes in the roots of Pisum sativum in response to salinity. Annals of Applied Biology, 145, 217–230.

    Article  CAS  Google Scholar 

  • Kim, Y-O., Kim, J. S., & Kang, H. (2005). Cold-inducible zinc finger-containing glycine-rich RNA-binding protein contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant Journal, 42, 890–900.

    Article  PubMed  CAS  Google Scholar 

  • Laberge, S., Castonguay, Y., & Vezina, L. P. (1993). New cold- and drought-regulated gene from Medicago sativa. Plant Physiology, 101, 1411–1412.

    Article  PubMed  CAS  Google Scholar 

  • Laxalt, A. M., Cassia, R. O., Sanllorenti, P. M., Madrid, E. A., Andreu, A. B., Daleo, G. R., et al. (1996). Accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase RNA under biological stress conditions and elicitor treatments in potato. Plant Molecular Biology, 30, 961–972.

    Article  PubMed  CAS  Google Scholar 

  • Liu, J. J., Ekramoddoullah, A. K. M., & Yu, X. S. (2003). Differential expression of multiple PR10 proteins in western white pine following wounding, fungal infection and cold-hardening. Physiologia Plantarum, 119, 544–553.

    Article  CAS  Google Scholar 

  • Lucas, J. A. (1998). Plant pathology and plant pathogens. Oxford: Blackwell.

    Google Scholar 

  • Luo, M., Lin, L., Hill, R. D., & Mohapatra, S. S. (1991). Primary structure of an environmental stress and abscisic acid-inducible alfalfa protein. Plant Molecular Biology, 17, 1267–1269.

    Article  PubMed  CAS  Google Scholar 

  • Luo, M., Liu, J-H., Mohapatra, S., Hill, R. D., & Mohapatra, S. S. (1992). Characterization of a gene family encoding abscisic acid- and environmental stress-inducible proteins of alfalfa. Journal of Biological Chemistry, 267, 15367–15374.

    PubMed  CAS  Google Scholar 

  • Matton, D. P., & Brisson, N. (1989). Cloning, expression, and sequence conservation of pathogenesis-related gene transcripts of potato. Molecular Plant–Microbe Interactions, 2, 325–331.

    PubMed  CAS  Google Scholar 

  • McDowell, J. M., & Dangl, J. L. (2000). Signal transduction in the plant immune response. Trends in Biochemical Science, 25, 79–82.

    Article  CAS  Google Scholar 

  • McGee, J. D., Hamer, J. E., & Hodges, T. K. (2001). Characterization of a PR-10 pathogenesis-related gene family induced in rice during infection with Magnaporthe grisea. Molecular Plant–Microbe Interactions, 14, 877–886.

    Article  PubMed  CAS  Google Scholar 

  • Mence, M. J., & Pegg, G. F. (1971). The biology of Peronospora viciae on pea: factors affecting the susceptibility of plants to local infection and systemic colonisation. Annals of Applied Biology, 67, 297–308.

    Article  Google Scholar 

  • Mitchell, H. J., Kovac, K. A., & Hardham, A. R. (2002). Characterisation of Phytophthora nicotianae zoospore and cyst membrane proteins. Mycological Research, 106, 1211–1223.

    Article  CAS  Google Scholar 

  • Moiseyev, G. P., Beintema, J. J., Fedoreyeva, L. I., & Yakovlev, G. I. (1994). High sequence similarity between a ribonuclease from ginseng calluses and fungus-elicited proteins from parsley indicates that intracellular pathogenesis-related proteins are ribonucleases. Planta, 193, 470–472.

    Article  PubMed  CAS  Google Scholar 

  • Moons, A., Bauw, G., Prinsen, E., van Montagu, M., & van der Straeten, D. (1995). Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties. Plant Physiology, 107, 177–186.

    Article  PubMed  CAS  Google Scholar 

  • Moons, A., Prinsen, E., Bauw, G., & Van Montagu, M. (1997). Antagonistic effects of abscisic acid and jasmonates on salt-stress inducible transcripts in rice roots. Plant Cell, 9, 2243–2259.

    Article  PubMed  CAS  Google Scholar 

  • Moore, B. D. (2004). Bifunctional and moonlighting enzymes: lighting the way to regulatory control. Trends in Plant Science, 9, 221–228.

    Article  PubMed  CAS  Google Scholar 

  • Mousavi, A., & Hotta, Y. (2005). Glycine-rich proteins – a class of novel proteins. Applied Biochemistry and Biotechnology, 120, 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Naqvi, S. M. S., Park, K.-S., Yi, S.-Y., Lee, H.-W., Bok, S. H., & Choi, D. (1998). A glycine-rich RNA-binding protein gene is differentially expressed during acute hypersensitive response following Tobacco mosaic virus infection in tobacco. Plant Molecular Biology, 37, 571–576.

    Article  PubMed  CAS  Google Scholar 

  • Nyamsuren, O., Colditz, F., Rosendahl, S., Tamasloukht, M., Bekel, T., Meyer, F., et al. (2003). Transcriptional profiling of Medicago truncatula roots after infection with Aphanomyces euteiches (oomycota) identifies novel genes upregulated during this pathogenic interaction. Physiological and Molecular Plant Pathology, 63, 17–26.

    Article  CAS  Google Scholar 

  • Park, C.-J., Kim, K.-J., Shin, R., Park, J. M., Shin, Y.-C., & Paek, K.-H. (2004). Pathogenesis-related protein 10 isolated from hot pepper functions as a ribonuclease in an antiviral pathway. Plant Journal, 37, 186–198.

    PubMed  CAS  Google Scholar 

  • Pinto, P. M., & Ricardo, C. P. P. (1995). Lupinus albus L. pathogenesis-related proteins that show similarity to PR10 proteins. Plant Physiology, 109, 1345–1351.

    Article  PubMed  CAS  Google Scholar 

  • Pfender, W. F. (1989). Aphanomyces root rot. In D. J. Hagedorn (Ed.), Compendium of pea diseases (pp. 25–28). St. Paul: American Phytopathological Society.

    Google Scholar 

  • Qutob, D., Hraber, P. T., Sobral, B. W. S., & Gijzen, M. (2000). Comparative analysis of expressed sequences in Phytophthora sojae. Plant Physiology, 123, 243–253.

    Article  PubMed  CAS  Google Scholar 

  • Repetto, O., Bestel-Corre, G., Dumus-Gaudot, B. G., Gianinazzi-Pearson, V., & Gianinazzi, S. (2003). Targeted proteomics to identify calcium-induced protein modifications in Glomus mossae-inoculated pea roots. New Phytologist, 157, 555–567.

    Article  CAS  Google Scholar 

  • Richard, S., Drevet, C., Jouanin, L., & Séguin, A. (1999). Isolation and characterization of a cDNA clone encoding a putative white spruce glycine-rich RNA binding protein. Gene, 240, 379–388.

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Lozano, J. M., Roussel, H., Gianinazzi, S., & Gianinazzi-Pearson, V. (1999). Defense genes are differentially induced by a mycorrhizal fungus and Rhizobium sp. in wild-type and symbiosis-defective pea genotypes. Molecular Plant–Microbe Interactions, 12, 976–984.

    Article  CAS  Google Scholar 

  • Schmelzer, E., Kruger-Lebus, S., & Hahlbrok, K. (1989). Temporal and spatial patterns of gene expression around sites of attempted fungal infection in parsley leaves. Plant Cell, 1, 993–1001.

    Article  PubMed  CAS  Google Scholar 

  • Scholes, J. D. (1992). Photosynthesis: cellular and tissue aspects in diseased leaves. In P. G. Ayres (Ed.), Pests and pathogens: plant responses to foliar attack (pp. 85–106). Oxford: BIOS Scientific.

    Google Scholar 

  • Shepherd, S. J., van West, P., & Gow, N. A. R. (2003). Proteomic analysis of asexual development of Phytophthora palmivora. Mycological Research, 107, 395–400.

    Article  PubMed  CAS  Google Scholar 

  • Showalter, A. M. (1993). Structure and function of plant cell wall proteins. Plant Cell, 5, 9–23.

    Article  PubMed  CAS  Google Scholar 

  • Somssich, I. E., Schmelzer, E., Kawalleck, P., & Hahlbrook, K. (1988). Gene structure and in situ transcript localization of pathogenesis-related protein 1 in parsley. Molecular and General Genetics, 213, 93–98.

    Article  PubMed  CAS  Google Scholar 

  • Stafstrom, J. P., Ripley, B. D., Devitt, M. L., & Drake, B. (1998). Dormancy-associated gene expression in pea axillary buds. Planta, 205, 547–552.

    Article  PubMed  CAS  Google Scholar 

  • Swoboda, I., Hoffmann-Sommergruber, K., O’Ríordáin, G., Scheiner, O., Heberle-Bors, E., & Vicente, O. (1996). Bet v1 proteins, the major birch pollen allergens and members of a family of conserved pathogenesis-related proteins, show ribonuclease activity in vitro. Physiologia Plantarum, 96, 433–438.

    Article  CAS  Google Scholar 

  • Ünlü, M., Morgan, M. E., & Minden, J. S. (1997). Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis, 18, 2071–2077.

    Article  PubMed  Google Scholar 

  • Utriainen, M., Kokko, H., Auriola, S., Sarrazin, O., & Karenlampi, S. (1998). PR-10 protein is induced by copper stress in roots and leaves of a Cu/Zn tolerant clone of birch, Betula pendula. Plant Cell and Environment, 21, 821–828.

    Article  CAS  Google Scholar 

  • Velasco, R., Salamini, F., & Bartels, D. (1994). Dehydration and ABA increase mRNA levels and enzyme activity of cytosolic GAPDH in the resurrection plant Craterostigma plantineum. Plant Molecular Biology, 26, 541–546.

    Article  PubMed  CAS  Google Scholar 

  • von Heijne, G. (1985). Signal sequences. The limits of variation. Journal of Molecular Biology, 184, 99–105.

    Article  Google Scholar 

  • Walter, M. H., Liu, J.-W., Grand, C., Lamb, C. J., & Hess, D. (1990). Bean pathogenesis-related (PR) proteins deduced from elicitor-induced transcripts are members of a ubiquitous new class of conserved PR proteins including pollen allergens. Molecular and General Genetics, 222, 353–360.

    Article  PubMed  CAS  Google Scholar 

  • Wan, J., Torres, M., Ganapathy, A., Thelen, J., DaGue, B. B., Mooney, B., et al. (2005). Proteomic analysis of soybean root hairs after infection by Bradyrhizobium japonicum. Molecular Plant–Microbe Interactions, 18, 458–467.

    Article  PubMed  CAS  Google Scholar 

  • Wang, C. S., Huang, J. C., & Hu, J. H. (1999a). Characterization of two subclasses of PR-10 transcripts in lily anthers and induction of their genes through separate signal transduction pathways. Plant Molecular Biology, 40, 807–814.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y. P., Nowak, G., Culley, D., Hadwiger, L. A., & Fristensky, B. (1999b). Constitutive expression of pea defense gene DRR206 confers resistance to blackleg (Leptosphaeria maculans) disease in transgenic canola (Brassica napus). Molecular PlantMicrobe Interactions, 12, 410–418.

    Article  CAS  Google Scholar 

  • Warner, S. A. J., Scott, R., & Draper, J. (1992). Characterisation of a wound-induced transcript from the monocot asparagus that shares similarity with a class of intracellular pathogenesis-related PR10 proteins. Plant Molecular Biology, 19, 555–561.

    Article  PubMed  CAS  Google Scholar 

  • Warner, S. A. J., Scott, R., & Draper, J. (1993). Isolation of an asparagus intracellular PR gene (AoPR1) wound-responsive promoter by the inverse polymerase chain reaction and its characterization in transgenic tobacco. Plant Journal, 3, 191–201.

    Article  PubMed  CAS  Google Scholar 

  • Wienkoop, S., & Saalbach, G. (2003). Proteome analysis. Novel protein identified at the peribacteroid membrane from Lotus japonicus root nodules. Plant Physiology, 131, 1080–1090.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by DEFRA grant HH3216SFV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. T. N. Spencer-Phillips.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amey, R.C., Schleicher, T., Slinn, J. et al. Proteomic analysis of a compatible interaction between Pisum sativum (pea) and the downy mildew pathogen Peronospora viciae . Eur J Plant Pathol 122, 41–55 (2008). https://doi.org/10.1007/s10658-008-9313-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-008-9313-2

Keywords

Navigation