Skip to main content

Advertisement

Log in

Eucalyptus occidentalis plantlets are naturally infected by pathogenic Agrobacterium tumefaciens

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

In the Sidi M’djahed nursery (Algeria), over 60,000 eucalyptus (Eucalyptus occidentalis) plantlets exhibited tumour-like growths localized at the crown of the plants that resembled crown galls caused by Agrobacterium tumefaciens. Bacteria colonizing the galls were isolated and purified. Most (22 out of 24) of the isolates had cultural and biochemical characteristics similar to those of strains of the biovar 1 of A. tumefaciens. Twenty out of 22 Agrobacterium isolates induced tumour formation on various test plants. In PCR experiments, DNA extracted from these virulent strains yielded an amplification signal corresponding to a 247-bp fragment located within the virulence region of nopaline type Ti plasmid. Consistent with this, the opine nopaline was detected in the tumours induced on test plants – but not on eucalyptus plants. Nopaline was degraded by the 20 pathogenic isolates that were also sensitive to agrocin 84, indicating the presence of a nopaline-type pTi in these strains. The chromosomal region encoding the 16S rRNA was analyzed in a sub-population of the pathogenic agrobacterial isolates. The analyzed strains were found to belong to the ribogroup of the reference strain B6. Interestingly, Eucalyptus camaldulensis and Eucalyptus cladocalyx grown in the same nursery and in the same soil substrate developed no galls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ITS:

Intergenic transcribed spacer

MG:

Mannitol glutamate

MS:

Murashige and Skoog

tms :

tumour morphology shoot

vir :

virulence

References

  • Azmi A, Dewitte W, Van Onckelen H, Chriqui D (2001) In situ localization of endogenous cytokinins during shooty tumor development on Eucalyptus globules Labill Planta 213:29–36

    Article  PubMed  CAS  Google Scholar 

  • Binns AN and Costantino P (1998) The Agrobacterium oncogenes. In: Spaink H, Kondorosi A and Hooykaas PJJ (eds.) The Rhizobiaceae (pp. 251–266). Kluwer Academic Publishers, Dordrecht, The Netherlands

  • Bouzar H, Chilton WS, Nesme X, Dessaux Y, Vaudequin V, Petit A, Jones JB, Hodge NC (1995) A new Agrobacterium strain isolated from aerial tumors on Ficus benjamina L. Applied and Environmental Microbiology 61:65–73

    PubMed  CAS  Google Scholar 

  • Bouzar H, Ouadah D, Krimi Z, Jones JB, Trovato M, Petit A, Dessaux Y (1993) Correlative association between resident plasmids and the host chromosome in a diverse Agrobacterium soil population. Applied and Environmental Microbiology 59:1310–1317

    PubMed  CAS  Google Scholar 

  • Brisbane PG, Kerr A (1983) Selective media for three biovars of Agrobacterium. Journal of Applied Bacteriology 54:425–431

    Google Scholar 

  • Burr TJ, Otten L (1999) Crown gall of grape: Biology and disease management. Annual Review of Phytopathology 37:53–80

    Article  PubMed  CAS  Google Scholar 

  • Christie PJ (2004) Type IV secretion: The Agrobacterium VirB/D4 and related conjugation systems. Biochimica et Biophysica Acta. 1694:219–234

    Article  PubMed  CAS  Google Scholar 

  • De Cleene M, De Ley J (1976) The host range of crown gall. Botanical Review 42:389–466

    Google Scholar 

  • Dessaux Y, Petit A, Farrand SK and Murphy PM (1998) Opines and opine-like molecules in plant–Rhizobiaceae interactions. In: Spaink H, Kondorosi A and Hooykaas PJJ (eds.) The Rhizobiaceae (pp. 173–197) Kluwer Academic Publishers, Dordrecht, The Netherlands

  • Dessaux Y, Petit A and Tempé J (1992) Opines in Agrobacterium biology. In: Verma DPS (ed.) Molecular Signals in Plant–Microbe Communications (pp. 109–136) CRC Press Inc., Boca Raton, USA

  • De Oliveira L, Machado R, de Andrade GM, Barrueto Cid LP, Penchel RM, Brasileiro ACM (1977). Agrobacterium strain specificity and shooty tumour formation in eucalypt (Eucalyptus grandis ×E. urophylla). Plant Cell Reports 16:299–303

    Google Scholar 

  • Gelvin SB (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration. Annual Review of Plant Physiology and Plant Molecular Biology 51:223–256

    Article  PubMed  CAS  Google Scholar 

  • Hansen G, Chilton MD (1999) Lessons in gene transfer to plants by a gifted microbe. Current Topics in Microbiology and Immunology 240:21–57

    PubMed  CAS  Google Scholar 

  • Harkenthal M, Reichling J, Geiss HK, Saller R (1999) Comparative study on the in-vitro antibacterial activity of Australian tea tree oil, cajaput oil, niaouli oil, manuka oil, kanuka oil, and eucalyptus oil. Pharmazie 54:460–463

    PubMed  CAS  Google Scholar 

  • Hayman GT, Farrand SK (1990) Agrobacterium plasmids encode structurally and functionally different loci for catabolism of agrocinopine-type opines. Molecular and General Genetics 223:465–473

    PubMed  CAS  Google Scholar 

  • Ho CK, Chang SH, Tsay JY, Tsai CJ, Chiang VL, Chen ZZ (1998) Agrobacterium tumefaciens-mediated transformation of Eucalyptus camaldulensis and production of transgenic plants. Plant Cell Reports 17:675–680

    Article  CAS  Google Scholar 

  • Hou AJ, Liu YZ, Yang H, Lin ZW, Sun HD (2000) Hydrolyzable tannins and related polyphenols from Eucalyptus globulus. Journal of Asian Natural Products Research 2:205–212

    PubMed  CAS  Google Scholar 

  • Keane PJ, Kerr A, New PB (1970) Crown gall of stone fruit. II. Identification and nomenclature of Agrobacterium isolates. Australian Journal of Biological Sciences 23:585–595

    Google Scholar 

  • Kersters K and De Ley J (1984) Genus III. Agrobacterium Conn 1942. In: Krieg NR and Holt JG (eds.) Bergey’s Manual of Systematic Bacteriology, Vol. 2 (pp. 244–254) Williams and Wilkins, Baltimore, USA

  • Moore LW, Chilton SC, Canfield ML (1997) Diversity of opines and opine-catabolizing bacteria isolated from naturally occurring crown gall tumors. Applied and Environmental Microbiology 63:201–207

    PubMed  CAS  Google Scholar 

  • Moore LW, Kado CI and Bouzar H (1988) Agrobacterium. In: Shaad NW (ed.) Laboratory Guide for Identification of Plant Pathogenic Bacteria, 2nd ed. (pp. 16–36) APS Press, Saint Paul, MN, USA

  • Mougel C, Thioulouse J, Perrière G, Nesme X (2002) A mathematical method for determining genome divergence and species delineation using AFLP. International Journal of Systematic and Evolutionary Microbiology 52:573–586

    PubMed  CAS  Google Scholar 

  • Mullis KB, Falloona FA (1987) Specific synthesis of DNA in-vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology 155:335–350

    Article  PubMed  CAS  Google Scholar 

  • Murashigue T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacoo cultures. Plant Physiology 15:473–497

    Article  Google Scholar 

  • Nautiyal CS, Dion P, Chilton WS (1999) Mannopine and mannopinic acid as substrates for Arthrobacter sp. strain MBA209 and Pseudomonas putida NA513. Journal of Bacteriology 173:2833–2841

    Google Scholar 

  • Nesme X, Leclerc MC and Bardin R (1990) PCR detection of an original endosymbiont: The Ti plasmid of Agrobacterium tumefaciens. In: Nardon P, Gianinazzi-Pearson V, Grenier AM, Margulis L and Smith DC (eds.) Endocytobiology IV, IVth International Colloquium on Endocytobiology and Symbiosis (pp. 47–50) Editions INRA, Paris, France

  • Nesme X, Michel M-F, Digat B (1987) Population heterogeneity of Agrobacterium tumefaciens in galls of Populus L. from a single nursery. Applied and Environmental Microbiology 53:655–659

    PubMed  Google Scholar 

  • Nesme X, Picard C and Simonet P (1995) Specific DNA sequences for detection of soil bacteria. In: Trevors JT and van Elsas JD (eds.) Nucleic Acids in the Environment, Methods and Applications (pp. 111–139) Springer-Verlag, Berlin, Germany

  • Nesme X, Ponsonnet C, Picard C, Normand P (1992) Chromosomal and pTi genotypes of Agrobacterium strains isolated from Populus tumors in two nurseries. FEMS Microbiology Ecology 101:189–196

    Article  CAS  Google Scholar 

  • Normand P, Cournoyer B, Simonet P, Nazaret S (1992) Analysis of a ribosomal RNA operon in the actinomycete Frankia. Gene 111:119–124

    Article  PubMed  CAS  Google Scholar 

  • Oger P, Dessaux Y, Petit A, Gardan L, Manceau C, Chomel C, Nesme X (1998) Validity sensitivity, and resolution limit of PCR-RFLP analysis of the rrs (16S rRNA gene) as a tool to identify soil-borne and plant-associated bacterial populations. Genetic Selection and Evolution 30(Suppl. 1):S311–S332

    CAS  Google Scholar 

  • Ophel K, Burr TJ, Magarey PA, Kerr A (1998) Detection of Agrobacterium tumefaciens biovar 3 in South Australian grapevine propagation material. Australasian Plant Pathology 17:61–66

    Article  Google Scholar 

  • Petit A, David C, Dahl GA, Ellis JG, Guyon P, Casse-Delbart F, Tempé J (1983) Further extension of the opine concept: Plasmids in Agrobacterium rhizogenes cooperate for opine degradation. Molecular and General Genetics 190:204–214

    Article  CAS  Google Scholar 

  • Petit A, Tempé J, Kerr A, Holsters M, Van Montagu M, Schell J (1978) Substrate induction of conjugative activity of Agrobacterium tumefaciens Ti plasmids. Nature (London) 271:570–572

    Article  CAS  Google Scholar 

  • Picard C, Ponsonnet C, Paget E, Nesme X, Simonet P (1992) Detection and enumeration of bacteria in soil by direct DNA extraction and polymerase chain reaction. Applied and Environmental Microbiology 58:2717–2722

    PubMed  CAS  Google Scholar 

  • Pionnat S, Keller H, Hericher D, Bettachini A, Dessaux Y, Nesme X, Poncet C (1999) Ti plasmids from Agrobacterium characterize rootstock clones that initiated a spread of crown gall disease in Mediterranean countries. Applied and Environmental Microbiology 65:4197–4206

    PubMed  CAS  Google Scholar 

  • Piper KR, Beck Von Bodman S, Hwang I, Farrand SK (1999) Hierarchical gene regulatory systems arising from fortuitous gene associations: Controlling quorum sensing by the opine regulon in Agrobacterium. Molecular Microbiology 32:1077–1089

    Article  PubMed  CAS  Google Scholar 

  • Ponsonnet C, Nesme X (1994) Identification of Agrobacterium strains by PCR-RFLP analysis of pTi and chromosomal regions. Archives of Microbiology 161:300–309

    PubMed  CAS  Google Scholar 

  • Popoff M, Kersters Y, Kiredjian KM, Miras I, Coynault C (1984) Position taxonomique de souches d’Agrobacterium d’origine hospitalière. Annales de Microbiologie 135:427–442

    Article  Google Scholar 

  • Rai MK, Qureshi S, Pandey AK (1999) In vitro susceptibility of opportunistic Fusarium spp. to essential oils. Mycoses 42:97–101

    Article  PubMed  CAS  Google Scholar 

  • Raio A, Peluso R, Nesme X, Zoina A (2004) Chromosomal and plasmid diversity of Agrobacterium strains isolated from Ficus benjamina tumors. European Journal of Plant Pathology 110:163–174

    Article  CAS  Google Scholar 

  • Stonier L (1960) Agrobacterium tumefaciens (Conn II) – Production of an antibiotic substance. Journal of Bacteriology 79:880–898

    PubMed  CAS  Google Scholar 

  • Tournier V, Grat S, Marque C, El Kayal W, Penchel R, de Andrade G, Boudet AM, Teulieres C (2003) An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis × Eucalyptus urophylla). Transgenic Research 12:403–411

    Article  PubMed  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiological Reviews 51:221–271

    PubMed  CAS  Google Scholar 

  • Zhu JP, Oger P, Schrammeijer B, Hooykaas PJJ, Farrand SK, Winans SC (2000) The bases of crown gall tumorigenesis. Journal of Bacteriology 182:3885–3895

    Article  PubMed  CAS  Google Scholar 

  • Ziemienowicz A (2001) Odyssey of Agrobacterium T-DNA. Acta Biochimica Polonica 48:623–635

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was made possible in part by INCO-DC, European project ERB1C18CT970198 ‚Integrated control of crown gall in Mediterranean Countries’, for which financial support is acknowledged. The authors thank Aurélie Raffoux, ISV-CNRS, for helpful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Dessaux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krimi, Z., Raio, A., Petit, A. et al. Eucalyptus occidentalis plantlets are naturally infected by pathogenic Agrobacterium tumefaciens . Eur J Plant Pathol 116, 237–246 (2006). https://doi.org/10.1007/s10658-006-9055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-006-9055-y

Keywords

Navigation