Skip to main content
Log in

Bone mineral density at the hip in Norwegian women and men—prevalence of osteoporosis depends on chosen references: the Tromsø Study

  • Locomotor Diseases
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

This study describes bone mineral density (BMD) and the prevalence of osteoporosis in women and men between 30–89 years in an unselected population. BMD was measured in g/cm2 at total hip and femoral neck by dual-energy-X-ray absorptiometry in 3,094 women and 2,132 men in the 2001 Tromsø Study. BMD levels were significantly explained by age and declined progressively in both sexes from middle into old age, with highest decline in women. With osteoporosis defined as a T-score of two and a half standard deviation below the young adult mean BMD, the prevalence at the total hip in subjects above 70 years was 6.9% in men and 15.3% in women, respectively, using the Lunar reference material for T-score calculations. The prevalence increased significantly to 7.3% in men and 19.5% in women, when T-scores were calculated on basis of the young adult mean BMD (age group 30–39 years) in the study population. At the femoral neck, prevalence of osteoporosis increased from 13.5 to 18.5% in men, and from 20.4 to 35.2% in women above 70 years, respectively, depending on how T-scores were calculated. The study highlights the challenges with fixed diagnostic levels when measuring normally distributed physiologic parameters. Although BMD only partly explains fracture risk, future studies should evaluate which calculations give optimal fracture prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BMD:

Bone mineral density

DXA:

Dual-energy X-ray absorptiometry

CaMos:

Canadian multicentre osteoporosis study

CI:

Confidence interval

HT:

Hormone treatment

SD:

Standard deviation

References

  1. Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002;359:1761–7. doi:10.1016/S0140-6736(02)08657-9.

    Article  PubMed  Google Scholar 

  2. Melton LJ III. Adverse outcomes of osteoporotic fractures in the general population. J Bone Miner Res. 2003;18:1139–41. doi:10.1359/jbmr.2003.18.6.1139.

    Article  PubMed  Google Scholar 

  3. Johnell O, Kanis JA. An estimate of the worldwide prevalence, mortality and disability associated with hip fracture. Osteoporos Int. 2004;15:897–902. doi:10.1007/s00198-004-1627-0.

    Article  PubMed  CAS  Google Scholar 

  4. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17:1726–33. doi:10.1007/s00198-006-0172-4.

    Article  PubMed  CAS  Google Scholar 

  5. Dennison E, Cole Z, Cooper C. Diagnosis and epidemiology of osteoporosis. Curr Opin Rheumatol. 2005;17:456–61. doi:10.1097/01.bor.0000166384.80777.0d.

    Article  PubMed  Google Scholar 

  6. El MA, Koumba BA, Jroundi I, Achemlal L, Bezza A, Tazi MA. Epidemiology of hip fractures in 2002 in Rabat, Morocco. Osteoporos Int. 2005;16:597–602. doi:10.1007/s00198-004-1729-8.

    Article  Google Scholar 

  7. Kanis JA, Johnell O, De Laet C, Jonsson B, Oden A, Ogelsby AK. International variations in hip fracture probabilities: implications for risk assessment. J Bone Miner Res. 2002;17:1237–44. doi:10.1359/jbmr.2002.17.7.1237.

    Article  PubMed  Google Scholar 

  8. Falch JA. Epidemiology of fractures of the distal forearm in Oslo, Norway. Acta Orthop Scand. 1983;54:291–5.

    PubMed  CAS  Google Scholar 

  9. Falch JA, Ilebekk A, Slungaard U. Epidemiology of hip fractures in Norway. Acta Orthop Scand. 1985;56:12–6.

    PubMed  CAS  Google Scholar 

  10. Hove LM, Fjeldsgaard K, Reitan R, Skjeie R, Sorensen FK. Fractures of the distal radius in a Norwegian city. Scand J Plast Reconstr Surg Hand Surg. 1995;29:263–7. doi:10.3109/02844319509050137.

    Article  PubMed  CAS  Google Scholar 

  11. Meyer HE, Falch JA, O’Neill T, Tverdal A, Varlow J. Height and body mass index in Oslo, Norway, compared to other regions of Europe: do they explain differences in the incidence of hip fracture? European vertebral osteoporosis study group. Bone. 1995;17:347–50. doi:10.1016/S8756-3282(95)00245-6.

    Article  PubMed  CAS  Google Scholar 

  12. Bacon WE, Maggi S, Looker A, Harris T, Nair CR, Giaconi J, et al. International comparison of hip fracture rates in 1988–1989. Osteoporos Int. 1996;6:69–75. doi:10.1007/BF01626541.

    Article  PubMed  CAS  Google Scholar 

  13. Kanis JA, Borgstrom F, De Laet C, Johansson H, Johnell O, Jonsson B, et al. Assessment of fracture risk. Osteoporos Int. 2005;16:581–9. doi:10.1007/s00198-004-1780-5.

    Article  PubMed  Google Scholar 

  14. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20:1185–94. doi:10.1359/JBMR.050304.

    Article  PubMed  Google Scholar 

  15. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312:1254–9.

    PubMed  CAS  Google Scholar 

  16. Kanis JA, Gluer CC. An update on the diagnosis and assessment of osteoporosis with densitometry. Committee of scientific advisors, international osteoporosis foundation. Osteoporos Int. 2000;11:192–202. doi:10.1007/s001980050281.

    Article  PubMed  CAS  Google Scholar 

  17. Kanis JA, Johnell O, Oden A, De Laet C, Mellstrom D. Epidemiology of osteoporosis and fracture in men. Calcif Tissue Int. 2004;75:90–9. doi:10.1007/s00223-004-0287-6.

    Article  PubMed  CAS  Google Scholar 

  18. Lewiecki EM, Gordon CM, Baim S, Leonard MB, Bishop NJ, Bianchi ML, et al. International society for clinical densitometry 2007 adult and pediatric official positions. Bone. 2008;43:1115–21. doi:10.1016/j.bone.2008.08.106.

    Article  PubMed  Google Scholar 

  19. Looker AC, Orwoll ES, Johnston CC Jr, Lindsay RL, Wahner HW, Dunn WL, et al. Prevalence of low femoral bone density in older US adults from NHANES III. J Bone Miner Res. 1997;12:1761–8. doi:10.1359/jbmr.1997.12.11.1761.

    Article  PubMed  CAS  Google Scholar 

  20. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, et al. Proximal femur bone mineral levels of US adults. Osteoporos Int. 1995;5:389–409. doi:10.1007/BF01622262.

    Article  PubMed  CAS  Google Scholar 

  21. Tenenhouse A, Joseph L, Kreiger N, Poliquin S, Murray TM, Blondeau L, et al. Estimation of the prevalence of low bone density in Canadian women and men using a population-specific DXA reference standard: the Canadian multicentre osteoporosis study (CaMos). Osteoporos Int. 2000;11:897–904. doi:10.1007/s001980070050.

    Article  PubMed  CAS  Google Scholar 

  22. Gjesdal CG, Aanderud SJ, Haga HJ, Brun JG, Tell GS. Femoral and whole-body bone mineral density in middle-aged and older Norwegian men and women: suitability of the reference values. Osteoporos Int. 2004;15:525–34. doi:10.1007/s00198-003-1573-2.

    Article  PubMed  Google Scholar 

  23. Naves M, az-Lopez JB, Gomez C, Rodriguez-Rebollar A, Serrano-Arias M, Cannata-Andia JB. Prevalence of osteoporosis in men and determinants of changes in bone mass in a non-selected Spanish population. Osteoporos Int. 2005;16:603–9. doi:10.1007/s00198-004-1727-x.

    Article  PubMed  CAS  Google Scholar 

  24. Szulc P, Munoz F, Duboeuf F, Marchand F, Delmas PD. Bone mineral density predicts osteoporotic fractures in elderly men: the MINOS study. Osteoporos Int. 2005;16:1184–92. doi:10.1007/s00198-005-1970-9.

    Article  PubMed  Google Scholar 

  25. Burger H, de Laet CE, van Daele PL, Weel AE, Witteman JC, Hofman A, et al. Risk factors for increased bone loss in an elderly population: the Rotterdam study. Am J Epidemiol. 1998;147:871–9.

    PubMed  CAS  Google Scholar 

  26. Ensrud KE, Palermo L, Black DM, Cauley J, Jergas M, Orwoll ES, et al. Hip and calcaneal bone loss increase with advancing age: longitudinal results from the study of osteoporotic fractures. J Bone Miner Res. 1995;10:1778–87.

    PubMed  CAS  Google Scholar 

  27. Glynn NW, Meilahn EN, Charron M, Anderson SJ, Kuller LH, Cauley JA. Determinants of bone mineral density in older men. J Bone Miner Res. 1995;10:1769–77.

    PubMed  CAS  Google Scholar 

  28. Hannan MT, Felson DT, Anderson JJ. Bone mineral density in elderly men and women: results from the Framingham osteoporosis study. J Bone Miner Res. 1992;7:547–53.

    Article  PubMed  CAS  Google Scholar 

  29. Hannan MT, Felson DT, Dawson-Hughes B, Tucker KL, Cupples LA, Wilson PW, et al. Risk factors for longitudinal bone loss in elderly men and women: the Framingham osteoporosis study. J Bone Miner Res. 2000;15:710–20. doi:10.1359/jbmr.2000.15.4.710.

    Article  PubMed  CAS  Google Scholar 

  30. Steiger P, Cummings SR, Black DM, Spencer NE, Genant HK. Age-related decrements in bone mineral density in women over 65. J Bone Miner Res. 1992;7:625–32.

    Article  PubMed  CAS  Google Scholar 

  31. Jones G, Nguyen T, Sambrook P, Kelly PJ, Eisman JA. Progressive loss of bone in the femoral neck in elderly people: longitudinal findings from the Dubbo osteoporosis epidemiology study. BMJ. 1994;309:691–5.

    PubMed  CAS  Google Scholar 

  32. Omsland TK, Emaus N, Gjesdal CG, Falch JA, Tell GS, Forsen L, et al. In vivo and in vitro comparison of densitometers in the NOREPOS study. J Clin Densitom. 2008;11:276–82. doi:10.1016/j.jocd.2007.10.001.

    Article  PubMed  Google Scholar 

  33. Robbins J, Schott AM, Azari R, Kronmal R. Body mass index is not a good predictor of bone density: results from WHI, CHS, and EPIDOS. J Clin Densitom. 2006;9:329–34. doi:10.1016/j.jocd.2006.02.005.

    Article  PubMed  Google Scholar 

  34. Gardner MM, Robertson MC, Campbell AJ. Exercise in preventing falls and fall related injuries in older people: a review of randomised controlled trials. Br J Sports Med. 2000;34:7–17. doi:10.1136/bjsm.34.1.7.

    Article  PubMed  CAS  Google Scholar 

  35. Wallace BA, Cumming RG. Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif Tissue Int. 2000;67:10–8. doi:10.1007/s00223001089.

    Article  PubMed  CAS  Google Scholar 

  36. Law MR, Hackshaw AK. A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture: recognition of a major effect. BMJ. 1997;315:841–6.

    PubMed  CAS  Google Scholar 

  37. Trivedi DP, Khaw KT. Bone mineral density at the hip predicts mortality in elderly men. Osteoporos Int. 2001;12:259–65. doi:10.1007/s001980170114.

    Article  PubMed  CAS  Google Scholar 

  38. Chapurlat RD, Gamero P, Sornay-Rendu E, Arlot ME, Claustrat B, Delmas PD. Longitudinal study of bone loss in pre- and perimenopausal women: evidence for bone loss in perimenopausal women. Osteoporos Int. 2000;11:493–8. doi:10.1007/s001980070091.

    Article  PubMed  CAS  Google Scholar 

  39. Binkley N, Kiebzak GM, Lewiecki EM, Krueger D, Gangnon RE, Miller PD, et al. Recalculation of the NHANES database SD improves T-score agreement and reduces osteoporosis prevalence. J Bone Miner Res. 2005;20:195–201. doi:10.1359/JBMR.041115.

    Article  PubMed  Google Scholar 

  40. Rothman KJ, Greenland S. Modern epidemiology. Philadelphia: Lippincott-Raven; 1998.

    Google Scholar 

  41. Henry YM, Fatayerji D, Eastell R. Attainment of peak bone mass at the lumbar spine, femoral neck and radius in men and women: relative contributions of bone size and volumetric bone mineral density. Osteoporos Int. 2004;15:263–73. doi:10.1007/s00198-003-1542-9.

    Article  PubMed  Google Scholar 

  42. Adami S, Kanis JA. Assessment of involutional bone loss: methodological and conceptual problems. J Bone Miner Res. 1995;10:511–7.

    PubMed  CAS  Google Scholar 

  43. Baran DT. Magnitude and determinants of premenopausal bone loss. Osteoporos Int. 1994;4(Suppl 1):31–4. doi:10.1007/BF01623432.

    Article  PubMed  Google Scholar 

  44. Khosla S, Melton LJ III, Atkinson EJ, O’Fallon WM. Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab. 2001;86:3555–61. doi:10.1210/jc.86.8.3555.

    Article  PubMed  CAS  Google Scholar 

  45. Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2002;359:1841–50. doi:10.1016/S0140-6736(02)08706-8.

    Article  PubMed  Google Scholar 

  46. Emaus N, Berntsen GK, Joakimsen RM, Fonnebo V. Longitudinal changes in forearm bone mineral density in women and men aged 25–44 years: the Tromso study: a population-based study. Am J Epidemiol. 2005;162:633–43. doi:10.1093/aje/kwi258.

    Article  PubMed  CAS  Google Scholar 

  47. Arlot ME, Sornay-Rendu E, Garnero P, Vey-Marty B, Delmas PD. Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: the OFELY cohort. J Bone Miner Res. 1997;12:683–90. doi:10.1359/jbmr.1997.12.4.683.

    Article  PubMed  CAS  Google Scholar 

  48. Ballard PA, Purdie DW, Langton CM, Steel SA, Mussurakis S. Prevalence of osteoporosis and related risk factors in UK women in the seventh decade: osteoporosis case finding by clinical referral criteria or predictive model? Osteoporos Int. 1998;8:535–9. doi:10.1007/s001980050095.

    Article  PubMed  CAS  Google Scholar 

  49. Melton LJ III. The prevalence of osteoporosis: gender and racial comparison. Calcif Tissue Int. 2001;69:179–81. doi:10.1007/s00223-001-1043-9.

    Article  PubMed  CAS  Google Scholar 

  50. Ribom EL, Ljunggren O, Mallmin H. Use of a Swedish T-score reference population for women causes a twofold increase in the amount of postmenopausal Swedish patients that fulfill the WHO criteria for osteoporosis. J Clin Densitom. 2008;11:404–11.

    Article  PubMed  Google Scholar 

  51. Delmas PD. Do we need to change the WHO definition of osteoporosis? Osteoporos Int. 2000;11:189–91. doi:10.1007/s001980050280.

    Article  PubMed  CAS  Google Scholar 

  52. Kanis JA, McCloskey EV, Johansson H, Oden A, Melton LJ III, Khaltaev N. A reference standard for the description of osteoporosis. Bone. 2008;42:467–75. doi:10.1016/j.bone.2007.11.001.

    Article  PubMed  CAS  Google Scholar 

  53. Kanis JA, Johnell O, Oden A, Jonsson B, De Laet C, Dawson A. Risk of hip fracture according to the World Health Organization criteria for osteopenia and osteoporosis. Bone. 2000;27:585–90. doi:10.1016/S8756-3282(00)00381-1.

    Article  PubMed  CAS  Google Scholar 

  54. Nguyen ND, Frost SA, Center JR, Eisman JA, Nguyen TV. Development of a nomogram for individualizing hip fracture risk in men and women. Osteoporos Int. 2007;18:1109–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Regional Health Authorities (Health North) and the Norwegian Research Council. We are grateful to the Tromsø Study for providing access to the data material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Emaus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emaus, N., Omsland, T.K., Ahmed, L.A. et al. Bone mineral density at the hip in Norwegian women and men—prevalence of osteoporosis depends on chosen references: the Tromsø Study. Eur J Epidemiol 24, 321–328 (2009). https://doi.org/10.1007/s10654-009-9333-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-009-9333-z

Keywords

Navigation