Skip to main content
Log in

The importance of using soil series-based geochemical background values when calculating the enrichment factor in agricultural areas

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The enrichment factor (EF) is one of the most commonly used indices for determining the source of air, water and soil pollution. However, concerns have been raised about the accuracy of the EF results because the formula leaves the choice of background value to the researcher's discretion. The EF was used in this study to assess the validity of such concerns and to determine heavy metal enrichment in five soil profiles with different parent materials (alluvial, colluvial, and quartzite). Moreover, the upper continental crust (UCC) and specific local background values (sub-horizons) were used as the geochemical backgrounds. When UCC values were applied, the soils were moderately enriched in Cr (2.59), Zn (3.54), Pb (4.50) and Ni (4.69), and significantly enriched in Cu (5.09), Cd (6.54) and As (6.64). Using the sub-horizons of the soil profiles as a background value, it was found that the soils had "moderate enrichment" by As (2.59) and "minimally enrichment" by Cu (0.86), Ni (1.01), Cd (1.11), Zn (1.23), Cr (1.30), and Pb (1.50). As a result, the UCC reported an inaccurate conclusion indicating that soils were 3.84 times more heavily polluted than they were. In addition, the statistical analyses performed in this study (Pearson correlation analysis and principal component analysis) revealed that the percentage of clay in the soil horizons and the cation exchange capacity had strong positive relationships (r ≥ 0.670, p < 0.05) with certain heavy metals (Al, Zn, Cr, Ni, Pb and Cd). These findings indicated that sampling from the "lowest horizons" or "parent materials" of the soil series would yield the most accurate results in determining the geochemical background values in agricultural areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The datasets used during the current study are available from the frst author on reasonable request.

References

  • Adimalla, N., & Wang, H. (2018). Distribution, contamination, and health risk assessment of heavy metals in surface soils from northern Telangana India. Arabian Journal of Geosciences, 11(21), 1–15.

    Article  CAS  Google Scholar 

  • Akbay, C., Aytop, H., & Dikici, H. (2022). Evaluation of radioactive and heavy metal pollution in agricultural soil surrounding the lignite-fired thermal power plant using pollution indices. International Journal of Environmental Health Research. https://doi.org/10.1080/09603123.2022.2102157

    Article  Google Scholar 

  • Anderson, R. H., & Kravitz, M. J. (2010). Evaluation of geochemical associations as a screening tool for identifying anthropogenic trace metal contamination. Environmental Monitoring and Assessment, 167(1), 631–641.

    Article  CAS  Google Scholar 

  • Ateş, Ö., Taşpınar, K., Yalçın, G., Kızılaslan, F., Pınar, M. Ö., Toprak, S., Alveroğlu, V., Yavuz, R., & Özen, D. (2022). Ecological and contamination assessment of soil in the region of coal-fired thermal power plant. International Journal of Environmental Health Research. https://doi.org/10.1080/09603123.2022.2108384

    Article  Google Scholar 

  • Atik, M. (2017). Zeytinde değişken düzeyli azot ihtiyacının sensör ve yaprak analizleriyle belirlenip karşılaştırılması (Master's thesis, Namık Kemal Üniversitesi).

  • Aytop, H., & Şenol, S. (2022a). The effect of different land use planning scenarios on the amount of total soil losses in the Mikail Stream Micro-Basin. Environmental Monitoring and Assessment, 194(4), 1–19. https://doi.org/10.1007/s10661-022-09937-2

    Article  Google Scholar 

  • Aytop, H., & Şenol, S. (2022b). Farklı Ana Materyaller Üzerinde Oluşmuş Mikail Çayı Mikro Havzası Toprakları. Türk Tarım Ve Doğa Bilimleri Dergisi, 9(1), 85–96. https://doi.org/10.30910/turkjans.1014874

    Article  Google Scholar 

  • Aytop, H., Ateş, Ö., Dengiz, O., Yılmaz, C. H., & Demir, Ö. F. (2023). Environmental, ecological and health risks of boron in agricultural soils of Amik Plain under Mediterranean conditions. Stochastic Environmental Research and Risk Assessment. https://doi.org/10.1007/s00477-023-02380-w

    Article  Google Scholar 

  • Aytop, H. (2022). Evaluation of environmental and ecological risks caused by metals in agricultural areas: an example in the Amik Plain of South Turkey. International Journal of Environmental Health Research. https://doi.org/10.1080/09603123.2022.2097203

    Article  Google Scholar 

  • Baltas, H., Sirin, M., Gökbayrak, E., & Ozcelik, A. E. (2020). A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province Turkey. Chemosphere, 241, 125015. https://doi.org/10.1016/j.chemosphere.2019.125015

    Article  CAS  Google Scholar 

  • Bayraklı, B., Dengiz, O., Özyazıcı, M. A., Koç, Y., Kesim, E., & Türkmen, F. (2023). Assessment of heavy metal concentrations and behavior in cultivated soils under humid-subhumid environmental condition of the Black Sea region. Geoderma Regional, 32, e00593.

    Article  Google Scholar 

  • Blanco-Canqui, H., & Lal, R. (2008). Principles of Soil Conservation and Management (p. 564). Springer.

    Google Scholar 

  • Blaser, P., Zimmermann, S., Luster, J., & Shotyk, W. (2000). Critical examination of trace element enrichments and depletions in soils: As, Cr, Cu, Ni, Pb, and Zn in Swiss forest soils. Science of the Total Environment, 249(1–3), 257–280.

    Article  CAS  Google Scholar 

  • Bouyoucos, G. J. (1951). A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43(9), 434–438.

    Article  CAS  Google Scholar 

  • Cao, X., Li, W., Song, S., Wang, C., & Khan, K. (2022). Source apportionment and risk assessment of soil heavy metals around a key drinking water source area in northern China: multivariate statistical analysis approach. Environmental Geochemistry and Health, 1–15.

  • Chandrasekaran, A., Ravisankar, R., Harikrishnan, N., Satapathy, K. K., Prasad, M. V. R., & Kanagasabapathy, K. V. (2015). Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India—Spectroscopical approach. Spectrochimica Acta—Part a: Molecular and Biomolecular Spectroscopy, 137, 589–600. https://doi.org/10.1016/j.saa.2014.08.093

    Article  CAS  Google Scholar 

  • Chen, T. B., Wong, J. W. C., Zhou, H. Y., & Wong, M. H. (1997). Assessment of trace metal distribution and contamination in surface soils of Hong Kong. Environmental Pollution, 96(1), 61–68.

    Article  CAS  Google Scholar 

  • Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512, 143–153.

    Article  Google Scholar 

  • Ciolkosz, E. J., Waltman, W. J., Thurman, N. C., Cremeens, D. L., & Svoboda, M. D. (1996). Argillic horizons in Pennsylvania soils. Soil Survey Horizons, 37(1), 20–44.

    Article  Google Scholar 

  • Drake, E. H., & Motto, H. L. (1982). An analysis of the effect of clay and organic matter content on the cation exchange capacity of New Jersey soils. Soil Science, 133(5), 281–288.

    Article  Google Scholar 

  • Durand, J. F. (2012). The impact of gold mining on the Witwatersrand on the rivers and karst system of Gauteng and North West Province, South Africa. Journal of African Earth Sciences, 68, 24–43.

    Article  Google Scholar 

  • Dytłow, S., & Górka-Kostrubiec, B. (2021). Concentration of heavy metals in street dust: An implication of using different geochemical background data in estimating the level of heavy metal pollution. Environmental Geochemistry and Health, 43(1), 521–535.

    Article  Google Scholar 

  • Elizabeth Rani, C., Balaji Ayyadurai, V., & Kavitha, K. K. (2021). Bioremediation of Heavy Metals and Toxic Chemicals from Muttukadu Lake, Chennai by Biosurfactant and Biomass Treatment Strategies. In Bioremediation and Green Technologies (pp. 67–85). Springer, Cham.

  • Elliott, P. E., & Drohan, P. J. (2009). Clay accumulation and argillic-horizon development as influenced by aeolian deposition vs local parent material on quartzite and limestone-derived alluvial fans. Geoderma, 151(3–4), 98–108.

    Article  CAS  Google Scholar 

  • Foorginezhad, S., Zerafat, M. M., Mohammadi, Y., & Asadnia, M. (2022). Fabrication of tubular ceramic membranes as low-cost adsorbent using natural clay for heavy metals removal. Cleaner Engineering and Technology, 10, 100550.

    Article  Google Scholar 

  • Gałuszka, A. (2007). A review of geochemical background concepts and an example using data from Poland. Environmental Geology, 52(5), 861–870.

    Article  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1979). Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters. Soil Science Society of Americal Journal, 43(5), 1004–1007.

    Article  Google Scholar 

  • Ghasemi, H., Afshang, M., Gilvari, T., Aghabarari, B., & Mozaffari, S. (2023). Rapid and effective removal of heavy metal ions from aqueous solution using nanostructured clay particles. Results in Surfaces and Interfaces, 100097.

  • Githaiga, K. B., Njuguna, S. M., & Yan, X. (2021). Local geochemical baselines reduce variation caused by the use of different conservative elements in predicting Cu and Zn enrichment in agricultural soils Kenya. Chemistry Africa, 4(4), 869–880.

    Article  CAS  Google Scholar 

  • Gough, L. P. (1993). Understanding our fragile environment. Lessons from geochemical studies. US Geological Survey Circular, 1105, 1–34.

    Google Scholar 

  • Grandclément, C., Seyssiecq, I., Piram, A., Wong-Wah-Chung, P., Vanot, G., Tiliacos, N., Roche, N., & Doumenq, P. (2017). From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: a review. Water Research, 111, 297–317.

    Article  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001.

    Article  Google Scholar 

  • Hazelton, P., & Murphy, B. (2016). Interpreting soil test results: What do all the numbers mean?. CSIRO publishing.

  • Hu, J., Lin, B., Yuan, M., Lao, Z., Wu, K., Zeng, Y., Liang, Z., Li, H., Li, Y., Zhu, D., Liu, J., & Fan, H. (2019). Trace metal pollution and ecological risk assessment in agricultural soil in Dexing Pb/Zn mining area China. Environmental Geochemistry and Health, 41(2), 967–980.

    Article  CAS  Google Scholar 

  • Huang, Y., Chen, Q., Deng, M., Japenga, J., Li, T., Yang, X., & He, Z. (2018). Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. Journal of Environmental Management, 207, 159–168.

    Article  CAS  Google Scholar 

  • İrget, M. E., Kiliç, C. C., Bayaz, M., & Özer, K. (2007). Azotlu gübrelemenin zeytinde (Olea europaea L. cv. Memecik) verim ve kaliteye etkisi. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 4(1/2), 27–33.

    Google Scholar 

  • Islam, M. M., Akther, S. M., Hossain, M. F., & Parveen, Z. (2022). Spatial distribution and ecological risk assessment of potentially toxic metals in the Sundarbans mangrove soils of Bangladesh. Scientific Reports, 12(1), 1–14.

    Article  Google Scholar 

  • Jackson, M. L., 1979, Soil Chemical Analysis-Advanced Course. 2nd Ed, 11th Printing. Published by The Author, Madison.

  • Jalali, M., & Khanlari, Z. V. (2008). Environmental contamination of Zn, Cd, Ni, Cu, and Pb from industrial areas in Hamadan Province, Western Iran. Environmental Geology, 55(7), 1537–1543.

    Article  CAS  Google Scholar 

  • Kafle, H. K., Khadgi, J., Ojha, R. B., & Santoso, M. (2022). Concentration, sources, and associated risks of trace elements in the surface soil of Kathmandu Valley Nepal. Water, Air, & Soil Pollution, 233(2), 1–18.

    Article  Google Scholar 

  • Kavamura, V. N., & Esposito, E. (2010). Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnology Advances, 28(1), 61–69.

    Article  CAS  Google Scholar 

  • Kerr, P. F. (1952). Formation and occurrence of clay minerals. Clays and Clay Minerals, 1, 19–32.

    Article  Google Scholar 

  • Kiekens, L. (1983). Behavior of heavy metals in soils. Utilization of sewage sludge on land: Rates of application and long-term effects of metals. Dordrecht: D. Reidel Publishing.

    Google Scholar 

  • Kim, R. Y., Yoon, J. K., Kim, T. S., Yang, J. E., Owens, G., & Kim, K. R. (2015). Bioavailability of heavy metals in soils: Definitions and practical implementation—A critical review. Environmental Geochemistry and Health, 37, 1041–1061.

    Article  CAS  Google Scholar 

  • Kim, H., Lee, M., Lee, J. H., Kim, K. H., Owens, G., & Kim, K. R. (2020). Distribution and extent of heavy metal (loid) contamination in agricultural soils as affected by industrial activity. Applied Biological Chemistry, 63(1), 1–8.

    Article  Google Scholar 

  • Kinoti, I. K., Karanja, E. M., Nthiga, E. W., M’thiruaine, C. M., & Marangu, J. M. (2022). Review of clay-based nanocomposites as adsorbents for the removal of heavy metals. Journal of Chemistry, 2022.

  • Kome, G. K., Enang, R. K., Tabi, F. O., & Yerima, B. P. K. (2019). Influence of clay minerals on some soil fertility attributes: A review. Open Journal of Soil Science, 9(9), 155–188.

    Article  CAS  Google Scholar 

  • Kowalska, J. B., Nicia, P., Gąsiorek, M., Zadrożny, P., Węgrzyn, M. H., & Waroszewski, J. (2022). Are natural or anthropogenic factors influencing potentially toxic elements’ enrichment in soils in proglacial zones? An example from Kaffiøyra (Oscar II Land, Spitsbergen). International Journal of Environmental Research and Public Health, 19(20), 13703.

    Article  CAS  Google Scholar 

  • Kumar, R., Suresh, N., Sangode, S. J., & Kumaravel, V. (2007). Evolution of the Quaternary alluvial fan system in the Himalayan foreland basin: Implications for tectonic and climatic decoupling. Quaternary International, 159(1), 6–20.

    Article  Google Scholar 

  • Kumar, V., Sharma, A., Kaur, P., Sidhu, G. P. S., Bali, A. S., Bhardwaj, R., Thukral, A. K., & Cerda, A. (2019). Pollution assessment of heavy metals in soils of India and ecological risk assessment: a state-of-the-art. Chemosphere, 216, 449–462.

    Article  CAS  Google Scholar 

  • Kumari, N., & Mohan, C. (2021). Basics of clay minerals and their characteristic properties. Clay Clay Miner, 24, 1–29.

    Google Scholar 

  • Kwiatkowska-Malina, J. (2018). Functions of organic matter in polluted soils: The effect of organic amendments on phytoavailability of heavy metals. Applied Soil Ecology, 123, 542–545.

    Article  Google Scholar 

  • Li, Y., Zhang, H., Tu, C., Song, F., & Luo, Y. (2017). Occurrence of red clay horizon in soil profiles of the Yellow River Delta: Implications for accumulation of heavy metals. Journal of Geochemical Exploration, 176, 120–127.

    Article  CAS  Google Scholar 

  • Li, S., Yang, L., Chen, L., Zhao, F., & Sun, L. (2019). Spatial distribution of heavy metal concentrations in peri-urban soils in eastern China. Environmental Science and Pollution Research, 26, 1615–1627.

    Article  CAS  Google Scholar 

  • Loaiza-Usuga, J. C., Toro-Quijano, M. I., & Weber, M. B. (2022). Alluvial soils as paleoenvironmental indicator in fluvial environments: A case study from Colombia. Soil Science Annual, 73(3), 157400.

    Google Scholar 

  • Loska, K., Wiechuła, D., & Korus, I. (2004). Metal contamination of farming soils affected by industry. Environment International, 30(2), 159–165.

    Article  CAS  Google Scholar 

  • Mavakala, B. K., Sivalingam, P., Laffite, A., Mulaji, C. K., Giuliani, G., Mpiana, P. T., & Poté, J. (2022). Evaluation of heavy metal content and potential ecological risks in soil samples from wild solid waste dumpsites in developing country under tropical conditions. Environmental Challenges, 7, 100461.

    Article  CAS  Google Scholar 

  • USEPA Method 3051A (1998). Microwave assisted acid digestion of sediments, sludges, soils and oils; United States Environmental Protection Agency: Washington, DC, USA, 1998

  • Otunola, B. O., & Ololade, O. O. (2020). A review on the application of clay minerals as heavy metal adsorbents for remediation purposes. Environmental Technology & Innovation, 18, 100692.

    Article  Google Scholar 

  • Rajendran, S., Priya, T. A. K., Khoo, K. S., Hoang, T. K., Ng, H. S., Munawaroh, H. S. H., Karaman, C., Orooji, Y., & Show, P. L. (2022). A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere, 287, 132369.

    Article  CAS  Google Scholar 

  • Rajmohan, N., Prathapar, S. A., Jayaprakash, M., & Nagarajan, R. (2014). Vertical distribution of heavy metals in soil profile in a seasonally waterlogging agriculture field in Eastern Ganges Basin. Environmental Monitoring and Assessment, 186(9), 5411–5427.

    Article  CAS  Google Scholar 

  • Reimann, C., & de Caritat, P. (2005). Distinguishing between natural and anthropogenic sources for elements in the environment: Regional geochemical surveys versus enrichment factors. Science of the Total Environment, 337(1–3), 91–107.

    Article  CAS  Google Scholar 

  • Rezapour, S., Asadzadeh, F., Nouri, A., Khodaverdiloo, H., & Heidari, M. (2022a). Distribution, source apportionment, and risk analysis of heavy metals in river sediments of the Urmia Lake basin. Scientific Reports, 12(1), 17455. https://doi.org/10.1038/s41598-022-21752-w

    Article  CAS  Google Scholar 

  • Rezapour, S., Siavash Moghaddam, S., Nouri, A., & Khosravi Aqdam, K. (2022b). Urbanization influences the distribution, enrichment, and ecological health risk of heavy metals in croplands. Scientific Reports, 12(1), 3868. https://doi.org/10.1038/s41598-022-07789-x

    Article  CAS  Google Scholar 

  • Rhoades, J., 1982, Cation Exchange Capacity, Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (Methodsofsoilan2), 149–157.

  • Rinklebe, J., Antoniadis, V., Shaheen, S. M., Rosche, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment International, 126, 76–88.

    Article  CAS  Google Scholar 

  • Rudnick, R. L., & Gao, S. (2004). Composition of the continental crust. In H. D. Holland & K. K. Turekian (Eds.), Treatise on Geochemistry (pp. 1–51). Elsevier.

    Google Scholar 

  • Sağlam, M., & Dengiz, O. (2015). Similarity analysis of soils formed on limestone/marl-alluvial parent material and different topography using some physical and chemical properties via cluster and multidimensional scaling methods. Environmental Monitoring and Assessment, 187, 100. https://doi.org/10.1007/s10661-014-4226-3

    Article  CAS  Google Scholar 

  • Senanu, L. D., Kranjac-Berisavljevic, G., & Cobbina, S. J. (2023). The use of local materials to remove heavy metals for household-scale drinking water treatment: A review. Environmental Technology & Innovation, 103005.

  • Soil Survey Lab. Staff, 1992. Soil Survey Laboratory Methods Manual, USDA- SCS- NSSC, 42.

  • Soil Survey Staff. (2014). Keys to Soil Taxonomy. 12th Edition, USDA-Natural Resources Conservation Service, Washington D.C.

  • Sungur, A., Soylak, M., Yilmaz, E., Yilmaz, S., & Ozcan, H. (2015). Characterization of heavy metal fractions in agricultural soils by sequential extraction procedure: The relationship between soil properties and heavy metal fractions. Soil and Sediment Contamination: An International Journal, 24(1), 1–15.

    Article  CAS  Google Scholar 

  • Sutherland, R. A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu Hawaii. Environmental Geology, 39(6), 611–627.

    Article  CAS  Google Scholar 

  • Taşpınar, K., Ateş, Ö., Özge Pınar, M., Yalçın, G., Kızılaslan, F., & Fidantemiz, Y. F. (2022). Soil contamination assessment and potential sources of heavy metals of alpu plain Eskişehir Turkey. International Journal of Environmental Health Research, 32(6), 1282–1290. https://doi.org/10.1080/09603123.2021.1876218

    Article  CAS  Google Scholar 

  • Taşpinar, K., Ateş, Ö., Yalçin, G., Kizilaslan, F., & Pinar, M. Ö. (2021). Soil contamination and healthy risk assessment of peach orchards soil of Bilecik Province Turkey. International Journal of Environmental Health Research, 1–10.

  • Tholkappian, M., Ravisankar, R., Chandrasekaran, A., Jebakumar, J. P. P., Kanagasabapathy, K. V., Prasad, M. V. R., & Satapathy, K. K. (2018). Assessing heavy metal toxicity in sediments of Chennai Coast of Tamil Nadu using energy dispersive X-Ray fluorescence spectroscopy (EDXRF) with statistical approach. Toxicology Reports, 5, 173–182. https://doi.org/10.1016/j.toxrep.2017.12.020

    Article  CAS  Google Scholar 

  • Tian, Z., Pan, Y., Chen, M., Zhang, S., & Chen, Y. (2023). The relationships between fractal parameters of soil particle size and heavy-metal content on alluvial-proluvial fan. Journal of Contaminant Hydrology, 254, 104140.

    Article  CAS  Google Scholar 

  • Varol, M., Sünbül, M. R., Aytop, H., & Yılmaz, C. H. (2020). Environmental, ecological and health risks of trace elements, and their sources in soils of Harran Plain Turkey. Chemosphere, 245, 125592.

    Article  CAS  Google Scholar 

  • Villar, A. G. (1996). Abanicos aluviales: Aportación teórica a sus aspectos más significativos. Cuatern. Geomorfol., 10(3–4), 77–124.

    Google Scholar 

  • Wang, Y., Zhang, X., Sun, W., Wang, J., Ding, S., & Liu, S. (2022). Effects of hyperspectral data with different spectral resolutions on the estimation of soil heavy metal content: From ground-based and airborne data to satellite-simulated data. Science of the Total Environment, 838, 156129.

    Article  CAS  Google Scholar 

  • Wang, X., Dan, Z., Cui, X., Zhang, R., Zhou, S., Wenga, T., … Zhong, L. (2020). Contamination, ecological and health risks of trace elements in soil of landfill and geothermal sites in Tibet. Science of the Total Environment, 715, 136639. https://doi.org/10.1016/j.scitotenv.2020.136639.

  • Wei, B., Yu, J., Cao, Z., Meng, M., Yang, L., & Chen, Q. (2020). The availability and accumulation of heavy metals in greenhouse soils associated with intensive fertilizer application. International Journal of Environmental Research and Public Health, 17(15), 5359.

    Article  CAS  Google Scholar 

  • Wilson, M. J. (2019). The importance of parent material in soil classification: A review in a historical context. Catena, 182, 104131, ISSN 0341–8162.

  • World Health Organization. (2019). Preventing disease through healthy environments: exposure to arsenic: a major public health concern (No. WHO/CED/PHE/EPE/19.4. 1). World Health Organization.

  • WRB, (2015). World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Notices, 2011.

  • Ye, S., Zeng, G., Wu, H., Liang, J., Zhang, C., Dai, J., Song, B., Wu, S., & Yu, J. (2019). The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil. Resources, Conservation and Recycling, 140, 278–285.

    Article  Google Scholar 

  • Yılmaz, C. H. (2022). Heavy metals and their sources, potential pollution situations and health risks for residents in Adıyaman province agricultural lands, Türkiye. Environmental Geochemistry and Health, 1–19.

  • Кabata-Pendias, A. (2011). Trace Elements in Soils and Plants. CRC Taylor and Francis Group, London New York.

Download references

Funding

The data of this study was obtained from the project numbered FDK-2019-11716, supported by Cukurova University Research Projects Unit.

Author information

Authors and Affiliations

Authors

Contributions

HA put forward the original idea and wrote the manuscript. HA, SŞ and YKK collected the soil samples. YKK and SŞ supervised the work and revised the manuscript. All the authors contributed to the manuscript writing.

Corresponding author

Correspondence to Halil Aytop.

Ethics declarations

Conflict of interest

The authors declare that there are no known competing interests.

Ethical statement

We have conducted ourselves with integrity, idelity and honesty. The submitted work is original and has not been published elsewhere in any form or language.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aytop, H., Koca, Y.K. & Şenol, S. The importance of using soil series-based geochemical background values when calculating the enrichment factor in agricultural areas. Environ Geochem Health 45, 6215–6230 (2023). https://doi.org/10.1007/s10653-023-01640-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01640-6

Keywords

Navigation