Skip to main content

Advertisement

Log in

Evaluation of geochemical associations as a screening tool for identifying anthropogenic trace metal contamination

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Geochemical association plots are used as a screening tool for environmental site assessments and use empirical log–log relationships between total trace metal concentrations and concentrations of a major (i.e., reference) soil metal constituent, such as iron (Fe), to discern sites with naturally elevated trace metal levels from sites with anthropogenic contamination. Log–log relationships have been consistently observed between trace metal and reference metal concentrations and are often considered constant. Consequently, we used a regional geochemistry data set to evaluate background trace metal/Fe log–log associations across soils with highly diverse composition. Our results indicate that, although geochemical associations may be proportional, they significantly differ across predominant United States Department of Agriculture (USDA) soil orders. This suggests that highly complex interactions between soil-forming factors and variable secondary clay mineral composition affect the ratio of trace metals to Fe concentrations in soils. Also, intra-order variability in trace metal/Fe ratios generally ranged multiple orders of magnitude which suggest that the order level of the USDA soil taxonomic system is insufficient to reasonably classify background trace metal concentrations. Consequently, geochemical association plots are a useful screening tool for environmental site assessments, but ubiquitous application of generic background metal data sets could result in erroneous conclusions. Because significantly different ratios were observed across predominant USDA soil orders, an agglomerative clustering technique was used to elucidate hierarchical patterns of association. We present these results as a mechanism to aid environmental assessors in screening candidate background metal data sets for their applicability to site-specific soil composition; although site-specific background metal data should be utilized if ample pristine reference sites with similar (i.e., sub-order) soil composition can be identified and sampled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Buekers, J., Van Laer, L., Amery, F., Van Buggenhout, S., Maes, A., & Smolders, E. (2007). Role of soil constituents in fixation of soluble Zn, Cu, Ni and Cd added to soils. European Journal of Soil Science, 58, 1514–1524.

    Article  CAS  Google Scholar 

  • Burt, R., Fillmore, M., Wilson, M. A., Gross, E. R., Langridge, R. W., & Lammers, D. A. (2001). Soil properties of selected pedons on ultramafic rocks in Klamath Mountains, Oregon. Communications in Soil Science and Plant Analysis, 32, 2145–2175.

    Article  CAS  Google Scholar 

  • Burt, R., Wilson, M. A., Mays, M. D., & Lee, C. W. (2003). Major and trace elements of selected pedons in the USA. Journal of Environmental Quality, 32, 2109–2121.

    Article  CAS  Google Scholar 

  • Chen, M., Ma, L. Q., & Harris, W. G. (2002). Arsenic concentrations in Florida surface soils: Influence of soil type and properties. Soil Science Society of America Journal, 66, 632–640.

    CAS  Google Scholar 

  • Dragovic, S., Mihailovic, N., & Gajic, B. (2008). Heavy metals in soils: Distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere, 72, 491–495.

    Article  CAS  Google Scholar 

  • Egli, M., Nater, M., Mirabella, A., Raimondi, S., Ploetze, M., & Alioth, L. (2008). Clay minerals, oxyhydroxide formation, element leaching and humus development in volcanic soils. Geoderma, 143, 101–114.

    Article  CAS  Google Scholar 

  • Gerth, J. (2005). Effects of crystal modification on the binding of trace metals and arsenate by goethite. Journal of Soils and Sediments, 5, 30–36.

    Article  CAS  Google Scholar 

  • Guo, Q. H., Wang, Y. X., Ma, T., & Ma, R. (2007). Geochemical processes controlling the elevated fluoride concentrations in groundwaters of the Taiyuan basin, Northern China. Journal of Geochemical Exploration, 93, 1–12.

    Article  CAS  Google Scholar 

  • Gustavsson, N., Bolviken, B., Smith, D. B., & Severson, R. C. (2001). Geochemical landscapes of the conterminous United States: New map presentations for 22 elements. In: Interior Dot (Hrsg.). USGS Report # 1648, Denver, CO, USA.

  • Hamon, R. E., McLaughlin, M. J., Gilkes, R. J., Rate, A. W., Zarcinas, B., Robertson, A., et al. (2004). Geochemical indices allow estimation of heavy metal background concentrations in soils—art. no. GB1014. Global Biogeochemical Cycles, 18, B1014–B1014.

    Article  CAS  Google Scholar 

  • Hollander, M., & Wolf, D. A. (1999). Nonparametric statistical methods. New York: Wiley.

    Google Scholar 

  • Hossner, L. R. (1996). Dissolution for total elemental analysis. In: D. L. Sparks (Ed.), Method of soil analysis. Chemical methods (pp. 49–64). Madison: ASA and SSSA.

    Google Scholar 

  • Hsu, J. (1996). Multiple comparisons: Theory and methods. Boca Raton: CRC.

    Google Scholar 

  • Huelin, S. R., Longerich, H. P., Wilton, D. H. C., & Fryer, B. J. (2006). The determination of trace elements in Fe–Mn oxide coatings on pebbles using LA-ICP-MS. Journal of Geochemical Exploration, 91, 110–124.

    Article  CAS  Google Scholar 

  • Kaiser, K., Eusterhues, K., Rumpel, C., Guggenberger, G., & Kogel-Knabner, I. (2002). Stabilization of organic matter by soil minerals—investigations of density and particle-size fractions from two acid forest soils. Journal of Plant Nutrition and Soil Science, 165, 451–459.

    Article  CAS  Google Scholar 

  • Klassen, R. A. (1998). Geological factors affecting the distribution of trace metals in glacial sediments of central Newfoundland. Environmental Geology, 33, 154–169.

    Article  CAS  Google Scholar 

  • Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2004). Applied linear regression models. New York: McGraw-Hill.

    Google Scholar 

  • Lee, B. D., Graham, R. C., Laurent, T. E., Amrhein, C., & Creasy, R. M. (2001). Spatial distributions of soil chemical conditions in a serpentinitic wetland and surrounding landscape. Soil Science Society of America Journal, 65, 1183–1196.

    Article  CAS  Google Scholar 

  • Lopez, J. M. G., Bauluz, B., Fernandez-Nieto, C., & Oliete, A. Y. (2005). Factors controlling the trace-element distribution in fine-grained rocks: The Albian kaolinite-rich deposits of the Oliete Basin (NE Spain). Chemical Geology, 214, 1–19.

    Article  CAS  Google Scholar 

  • Martinez, J., Llamas, J., de Miguel, E., Rey, J., & Hidalgo, M. C. (2007). Determination of the geochemical background in a metal mining site: Example of the mining district of Linares (South Spain). Journal of Geochemical Exploration, 94, 19–29.

    Article  CAS  Google Scholar 

  • Meier, L. P., & Kahr, G. (1999). Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine. Clays and Clay Minerals, 47, 386–388.

    Article  CAS  Google Scholar 

  • Mico, C., Recatala, L., Peris, A., & Sanchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65, 863–872.

    Article  CAS  Google Scholar 

  • Mielke, H. W., Gonzales, C. R., Smith, M. K., & Mielke, P. W. (2000). Quantities and associations of lead, zinc, cadmium, manganese, chromium, nickel, vanadium, and copper in fresh Mississippi delta alluvium and New Orleans alluvial soils. Science of the Total Environment, 246, 249–259.

    Article  CAS  Google Scholar 

  • Minasny, B., McBratney, A. B., & Salvador-Blanes, S. (2008). Quantitative models for pedogenesis—a review. Geoderma, 144, 140–157.

    Article  CAS  Google Scholar 

  • Miretzky, P., Conzonno, V., & Cirelli, A. F. (2001). Geochemical processes controlling silica concentrations in groundwaters of the Salado River drainage basin, Argentina. Journal of Geochemical Exploration, 73, 155–166.

    Article  CAS  Google Scholar 

  • Molinaroli, E., Pistolato, M., Rampazzo, G., & Guerzoni, S. (1999). Geochemistry of natural and anthropogenic fall-out (aerosol and precipitation) collected from the NW Mediterranean: Two different multivariate statistical approaches. Applied Geochemistry, 14, 423–432.

    Article  CAS  Google Scholar 

  • Myers, J., & Thorbjornsen, K. (2004). Identifying metals contamination in soil: A geochemical approach. Soil & Sediment Contamination, 13, 1–16.

    Article  CAS  Google Scholar 

  • NRCS (2003). Keys to soil taxonomy (9th ed.). Washington, DC.: United States Department of Agriculture, Natural Resource Conservation Service (NRCS).

    Google Scholar 

  • Pueyo, M., Sastre, J., Hernandez, E., Vidal, M., Lopez-Sanchez, J. F., & Rauret, G. (2003). Prediction of trace element mobility in contaminated soils by sequential extraction. Journal of Environmental Quality, 32, 2054–2066.

    Article  CAS  Google Scholar 

  • Romesburg, C. H. (2004). Cluster analysis for researchers. Morrisville: Lulu.

    Google Scholar 

  • Scouller, R. C., Snape, I., Stark, J. S., & Gore, D. B. (2006). Evaluation of geochemical methods for discrimination of metal contamination in Antarctic marine sediments: A case study from Casey Station. Chemosphere, 65, 294–309.

    Article  CAS  Google Scholar 

  • Sinaj, S., Machler, F., & Frossard, E. (1999). Assessment of isotopically exchangeable zinc in polluted and nonpolluted soils. Soil Science Society of America Journal, 63, 1618–1625.

    CAS  Google Scholar 

  • Sparks, D. L. (2003). Environmental soil chemistry (2nd ed.). London: Academic.

    Google Scholar 

  • Sterckeman, T., Douay, F., Balze, D., Fourrier, H., Proix, N., & Schwartz, C. (2006). Trace elements in soils developed in sedimentary materials from Northern France. Geoderma, 136, 912–929.

    Article  CAS  Google Scholar 

  • Strawn, D., Doner, H., Zavarin, M., & McHugo, S. (2002). Microscale investigation into the geochemistry of arsenic, selenium, and iron in soil developed in pyritic shale materials. Geoderma, 108, 237–257.

    Article  CAS  Google Scholar 

  • Thorbjornsen, K., & Myers, J. (2007a). Identifying metals contamination in groundwater using geochemical correlation evaluation. Environmental Forensics, 8, 25–35.

    Article  CAS  Google Scholar 

  • Thorbjornsen, K., & Myers, J. (2007b). Identification of metals contamination in firing-range soil using geochemical correlation evaluation. Soil & Sediment Contamination, 16, 337–349.

    Article  CAS  Google Scholar 

  • Tongtavee, N., Shiowatana, J., McLaren, R. G., & Buanuam, J. (2005). Evaluation of distribution and chemical associations between cobalt and manganese in soils by continuous-flow sequential extraction. Communications in Soil Science and Plant Analysis, 36, 2839–2855.

    Article  CAS  Google Scholar 

  • Tume, P., Bech, J., Tumec, L., Reverter, F., Longan, L., & Cendoya, P. (2008). Concentrations and distributions of Ba, Cr, Sr, V, Al, and Fe in Torrelles soil profiles (Catalonia, Spain). Journal of Geochemical Exploration, 96, 94–105.

    Article  CAS  Google Scholar 

  • USEPA (2005). Guidance for developing ecological soil screening levels (pp. 7–55). Washington, DC: US EPA, Office of Solid Waste and Emergency Response (OSWER) directive 9285.

    Google Scholar 

  • Wilson, M. A., Burt, R., Indorante, S. J., Jenkins, A. B., Chiaretti, J. V., Ulmer, M. G., et al. (2008). Geochemistry in the modern soil survey program. Environmental Monitoring and Assessment, 139, 151–171.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Hunter Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, R.H., Kravitz, M.J. Evaluation of geochemical associations as a screening tool for identifying anthropogenic trace metal contamination. Environ Monit Assess 167, 631–641 (2010). https://doi.org/10.1007/s10661-009-1079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-009-1079-2

Keywords

Navigation