Skip to main content

Advertisement

Log in

Distribution, geochemical behavior, and risk assessment of arsenic in different floodplain aquifers of middle Gangetic basin, India

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The present study interprets the distribution and geochemical behavior of As in groundwaters of different regions along the floodplains of Ganga river (Varanasi, Ghazipur, Ballia), Ghaghara river (Lakhimpur Kheri, Gonda, Basti), and Rapti river (Balrampur, Shrawasti) in the middle Gangetic basin, India for risk assessment (non-carcinogenic and carcinogenic). The concentration of As in groundwaters of these floodplains ranged from 0.12 to 348 μg/L (mean 24 μg/L), with around ~ 37% of groundwater samples exceeding the WHO limit of 10 μg/L in drinking water. Highest As concentration (348 μg/L) was recorded in groundwater samples from Ballia (Ganga Floodplains), where 50% of the samples had As > 10 μg/L in groundwater. In the study area, a relatively higher mean concentration was recorded in deep wells (28.5 μg/L) compared to shallow wells (20 μg/L). Most of the high As-groundwaters were associated with the high Fe, bicarbonate and low nitrate and sulfate concentrations indicating the release of As via reductive dissolution of Fe oxyhydroxides. The saturation index values of the Fe minerals such as goethite, hematite, ferrihydrite, and siderite showed the oversaturation to near equilibrium in groundwater, suggesting that these mineral phases may act as source/sink of As in the aquifers of the study area. The health risk assessment results revealed that a large number of people in the study area were prone to carcinogenic and non-carcinogenic health risks due to daily consumption of As-polluted groundwater. The highest risks were estimated for the aquifers of Ganga floodplains, as indicated by their mean HQ (41.47) and CR (0.0142) values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acharyya, S. K. (2005). Arsenic levels in groundwater from Quaternary alluvium in the Ganga Plain and the Bengal Basin, Indian subcontinent: Insights into influence of stratigraphy. Gondwana Research, 8(1), 55–66.

    Article  CAS  Google Scholar 

  • Acharyya, S. K., & Shah, B. A. (2007). Groundwater arsenic contamination affecting different geologic domains in India—A review: Influence of geological setting, fluvial geomorphology and Quaternary stratigraphy. Journal of Environmental Science and Health, Part A, 42(12), 1795–1805.

    Article  CAS  Google Scholar 

  • Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, S. M., Bhuyian, M. H., & Sracek, O. (2004). Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: An overview. Applied Geochemistry, 19(2), 181–200.

    Article  CAS  Google Scholar 

  • Ahmed, N., Bodrud-Doza, M., Islam, S. D. U., Choudhry, M. A., Muhib, M. I., Zahid, A., & Bhuiyan, M. A. Q. (2018). Hydrogeochemical evaluation and statistical analysis of groundwater of Sylhet, north-eastern Bangladesh. Acta Geochimica, 38(3), 440–455.

    Article  Google Scholar 

  • Anawar, H. M., Akai, J., Yoshioka, T., Konohira, E., Lee, J. Y., Fukuhara, H., & Garcia-Sanchez, A. (2006). Mobilization of arsenic in groundwater of Bangladesh: Evidence from an incubation study. Environmental Geochemistry and Health, 28(6), 553–565.

    Article  CAS  Google Scholar 

  • APHA, A. (1998). WEF “Standard methods for the examination of water and wastewater, 20th edition”. American Public Health Association.

  • Appelo, C. A. J., & Postma, D. (2005). Geochemistry. Groundwater and pollution, 536.

  • Ashley, P. M., & Lottermoser, B. G. (1999). Arsenic contamination at the mole river mine, northern New South Wales. Australian Journal of Earth Sciences, 46(6), 861–874.

    Article  CAS  Google Scholar 

  • ATSDR. (2000). Toxicological profile for arsenic. US Department of Health and Human Services.

  • Barzegar, R., Moghaddam, A. A., Soltani, S., Fijani, E., Tziritis, E., & Kazemian, N. (2017). Heavy metal (loid) s in the groundwater of Shabestar area (NW Iran): Source identification and health risk assessment. Exposure and Health, 11(4), 251–265.

    Article  Google Scholar 

  • Bhattacharya, P., Chatterjee, D., & Jacks, G. (1997). Occurrence of arsenic-contaminated Groundwater in alluvial aquifers from Delta plains, eastern India: Options for safe drinking water supply. International Journal of Water Resources Development, 13(1), 79–92.

    Article  Google Scholar 

  • Bhattacharya, P., Samal, A. C., Majumdar, J., & Santra, S. C. (2009). Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India. Paddy and Water Environment, 8(1), 63–70.

    Article  Google Scholar 

  • Bindal, S., Kumar, A., Mallick, J., Shashtri, S., Kumar, P., & Singh, C. K. (2020). Geochemical, topographical, and meteorological controls on groundwater arsenic contamination in Sharda River Basin of Uttar Pradesh, India. Journal of Climate Change, 6(2), 71–87.

    Article  Google Scholar 

  • Central Pollution Control Board [CPCB]. (2007). Status of ground water quality in India. Part-I. Groundwater Quality Series: GWQS/09/2006. Ministry of Environment and Forests, Government of India.

  • Brömssen, M. V., Larsson, S. H., Bhattacharya, P., Hasan, M. A., Ahmed, K. M., Jakariya, M., Sikder, M. A., Sracek, O., Bivén, A., & Doušová, B. (2008). Geochemical characterisation of shallow aquifer sediments of Matlab Upazila, Southeastern Bangladesh—Implications for targeting low-As aquifers. Journal of Contaminant Hydrology, 99, 137–149.

    Article  Google Scholar 

  • Cacciabue, L., Ceballos, E., Sierra, L., Soler, J. M., & Cama, J. (2022). Processes that control the dissolution of loess sediments and contribution of arsenic release in the Chaco-Pampean plain, Argentina. Applied Geochemistry, 140, 105243.

    Article  CAS  Google Scholar 

  • CGWB. (2015). Groundwater year book, Uttar Pradesh, Central Groundwater Board. Ministry of Water Resources, River Development & Ganga Rejuvenation, Government of India.

  • Chakraborti, D., Rahman, M. M., Das, B., Chatterjee, A., Das, D., Nayak, B., & Kumar, M. (2017). Groundwater arsenic contamination and its health effects in India. Hydrogeology Journal, 25(4), 1165–1181.

    Article  CAS  Google Scholar 

  • Chakraborti, D., Singh, S. K., Rahman, M. M., Dutta, R. N., Mukherjee, S. C., Pati, S., & Kar, P. B. (2018). Groundwater arsenic contamination in the Ganga River Basin: A future health danger. International Journal of Environmental Research and Public Health, 15(2), 180.

    Article  Google Scholar 

  • Chakraborty, M., Mukherjee, A., & Ahmed, K. M. (2015). A review of groundwater arsenic in the Bengal Basin, Bangladesh and India: From source to sink. Current Pollution Reports, 1(4), 220–247.

    Article  CAS  Google Scholar 

  • Chakraborty, M., Mukherjee, A., & Ahmed, K. M. (2022). Regional-scale hydrogeochemical evolution across the arsenic-enriched transboundary aquifers of the Ganges River Delta system, India and Bangladesh. Science of the Total Environment, 823, 153490.

    Article  CAS  Google Scholar 

  • Clark, I. D., & Fritz, P. (2013). Environmental isotopes in hydrogeology. CRC Press.

    Book  Google Scholar 

  • Das, D., Chatterjee, A., Mandal, B. K., Samanta, G., Chakraborti, D., & Chanda, B. (1995). Arsenic in ground water in six districts of West Bengal, India: the biggest arsenic calamity in the world. Part 2. Arsenic concentration in drinking water, hair, nails, urine, skin-scale and liver tissue (biopsy) of the affected people. The Analyst, 120(3), 917–924.

    Article  CAS  Google Scholar 

  • Das, D., Samanta, G., Mandal, B. K., Chowdhury, T. R., Chanda, C. R., Chowdhury, P. P., & Chakraborti, D. (1996). Arsenic in groundwater in six districts of West Bengal, India. Environmental Geochemistry and Health, 18(1), 5–15.

    Article  CAS  Google Scholar 

  • Diwakar, J., Johnston, S. G., Burton, E. D., & Shrestha, S. D. (2015). Arsenic mobilization in an alluvial aquifer of the Terai region, Nepal. Journal of Hydrology: Regional Studies, 4, 59–79.

    Google Scholar 

  • Dowling, C. B., Poreda, R. J., Basu, A. R., Peters, S. L., & Aggarwal, P. K. (2002). Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater. Water Resources Research, 38(9), 12–21.

    Article  Google Scholar 

  • Fendorf, S., Michael, H. A., & van Geen, A. (2010). Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science, 328(5982), 1123–1127.

    Article  CAS  Google Scholar 

  • Gan, Y., Wang, Y., Duan, Y., Deng, Y., Guo, X., & Ding, X. (2014). Hydrogeochemistry and arsenic contamination of groundwater in the Jianghan Plain, central China. Journal of Geochemical Exploration, 138, 81–93.

    Article  CAS  Google Scholar 

  • van Geen, A., Zheng, Y. J., Versteeg, R., Stute, M., Horneman, A., Dhar, R., & Graziano, J. H. (2003). Spatial variability of arsenic in 6000 tube wells in a 25 km2 area of Bangladesh. Water Resources Research39(5).

  • Giri, S., & Singh, A. K. (2015). Human health risk assessment via drinking water pathway due to metal contamination in the groundwater of Subarnarekha River Basin, India. Environmental Monitoring and Assessment, 187(3), 1–14.

    Article  CAS  Google Scholar 

  • Guo, H., Yang, S., Tang, X., Li, Y., & Shen, Z. (2008). Groundwater geochemistry and its implications for arsenic mobilization in shallow aquifers of the Hetao Basin, Inner Mongolia. Science of the Total Environment, 393(1), 131–144.

    Article  CAS  Google Scholar 

  • Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., & Oates, P. M. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298(5598), 1602–1606.

    Article  CAS  Google Scholar 

  • Islam, F. S., Gault, A. G., Boothman, C., Polya, D. A., Charnock, J. M., Chatterjee, D., & Lloyd, J. R. (2004). Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 430(6995), 68–71.

    Article  CAS  Google Scholar 

  • Karim, M. M., Komori, Y., & Alam, M. (1997). Subsurface arsenic occurrence and depth of contamination in Bangladesh. Journal of Environmental Chemistry, 7(4), 783–792.

    Article  CAS  Google Scholar 

  • Kazmierczak, J., Postma, D., Dang, T., Van Hoang, H., Larsen, F., Hass, A. E., & Jakobsen, R. (2022). Groundwater arsenic content related to the sedimentology and stratigraphy of the Red River delta, Vietnam. Science of the Total Environment, 814, 152641.

    Article  CAS  Google Scholar 

  • Khan, M. U., & Rai, N. (2022). Arsenic and selected heavy metal enrichment and its health risk assessment in groundwater of the Haridwar district, Uttarakhand, India. Environmental Earth Sciences, 81(12), 1–18.

  • Kim, Y. S., Park, H. S., Kim, J. Y., Park, S. K., Cho, B. W., Sung, I. H., & Shin, D. C. (2004). Health risk assessment for uranium in Korean groundwater. Journal of Environmental Radioactivity, 77(1), 77–85.

    Article  CAS  Google Scholar 

  • Kocar, B. D., Borch, T., & Fendorf, S. (2009). Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite. Geochimica Et Cosmochimica Acta, 74(3), 980–994.

    Article  Google Scholar 

  • Komor, S. C., & Anderson, H. W., Jr. (1993). Nitrogen isotopes as indicators of nitrate sources in Minnesota sand-plain aquifers. Groundwater, 31(2), 260–270.

    Article  CAS  Google Scholar 

  • Kumar, H., Ranjan, R. K., Yadav, S., Kumar, A., Ramanathan, A. L. (2015). Hydrogeochemistry and arsenic distribution in the Gorakhpur district in the Middle Gangetic Plain, India. In Ramanathan, A. L. (Ed.), Safe and sustainable use of arsenic-contaminated aquifers in the Gangetic Plain.

  • Kumar, A., & Singh, C. K. (2020). Arsenic enrichment in groundwater and associated health risk in Bari doab region of Indus basin, Punjab, India. Environmental Pollution, 256, 113324.

    Article  CAS  Google Scholar 

  • Kumar, M., Ramanathan, A. L., Mukherjee, A., Verma, S., Rahman, M. M., & Naidu, R. (2018). Hydrogeo-morphological influences for arsenic release and fate in the central Gangetic Basin, India. Environmental Technology & Innovation, 12, 243–260.

    Article  Google Scholar 

  • Kumar, M., Ramanathan, A. L., Rahman, M. M., & Naidu, R. (2016). Concentrations of inorganic arsenic in groundwater, agricultural soils and subsurface sediments from the middle Gangetic plain of Bihar, India. Science of the Total Environment, 573, 1103–1114.

    Article  CAS  Google Scholar 

  • Kumar, S., Joshi, S. K., Pant, N., Singh, S., Chakravorty, B., Saini, R. K., & Singh, V. (2021). Hydrogeochemical evolution and groundwater recharge processes in arsenic enriched area in central Gangetic plain, India. Applied Geochemistry, 131, 105044.

    Article  CAS  Google Scholar 

  • Madhavan, N., & Subramanian, V. (2000). Sulphide mining as a source of arsenic in the environment. Current Science, 702–709.

  • Mallick, S., & Rajagopal, N. R. (1996). Groundwater development in the arsenic-affected alluvial belt of West Bengal—Some questions. Current Science, 70(11), 956–958.

    Google Scholar 

  • McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., Mishra, R., Purohit, R., Ravenscroft, P., & Lowry, D. (2004). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: The example of West Bengal and its worldwide implications. Applied Geochemistry, 19(8), 1255–1293.

    Article  CAS  Google Scholar 

  • McArthur, J. M., Ravenscroft, P., Safiulla, S., & Thirlwall, M. F. (2001). Arsenic in groundwater: Testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resources Research, 37(1), 109–117.

    Article  CAS  Google Scholar 

  • Mehrotra, A., Mishra, A., Tripathi, R. M., & Shukla, N. (2016). Mapping of arsenic contamination severity in Bahraich district of Ghagra basin, Uttar Pradesh, India. Geomatics, Natural Hazards and Risk, 7(1), 101–112.

    Article  Google Scholar 

  • Morton, W. E., & Dunnette, D. A. (1994). Health effects of environmental arsenic. Advances in Environmental Science and Technology-New York, 27, 17–17.

    CAS  Google Scholar 

  • Muhammad, S., Shah, M. T., & Khan, S. (2010). Arsenic health risk assessment in drinking water and source apportionment using multivariate statistical techniques in Kohistan region, northern Pakistan. Food and Chemical Toxicology, 48(10), 2855–2864.

    Article  CAS  Google Scholar 

  • Mukherjee, A. (2012). Controls on distribution of arsenic in the Central Gangetic basin (including the river Kosi fan). In A. L. Ramanathan, A. Mukherjee, B. Nath, & S. Johnston (Eds.), Indo-Australian workshop on arsenic (pp. 13–16). Jawaharlal Nehru University.

    Google Scholar 

  • Mukherjee, A. B., & Bhattacharya, P. (2001). Arsenic in groundwater in the Bengal Delta Plain: Slow poisoning in Bangladesh. Environmental Reviews, 9(3), 189–220.

    Article  CAS  Google Scholar 

  • Mukherjee, A., & Fryar, A. E. (2008). Deeper groundwater chemistry and geochemical modeling of the arsenic affected western Bengal basin, West Bengal, India. Applied Geochemistry, 23(4), 863–894.

    Article  CAS  Google Scholar 

  • Mukherjee, A., Sarkar, S., Chakraborty, M., Duttagupta, S., Bhattacharya, A., Saha, D., & Gupta, S. (2021). Occurrence, predictors and hazards of elevated groundwater arsenic across India through field observations and regional-scale AI-based modeling. Science of the Total Environment, 759, 143511.

    Article  CAS  Google Scholar 

  • Mukherjee, A., Scanlon, B. R., Fryar, A. E., Saha, D., Ghosh, A., Chowdhuri, S., & Mishra, R. (2012). Solute chemistry and arsenic fate in aquifers between the Himalayan foothills and Indian craton (including central Gangetic plain): Influence of geology and geomorphology. Geochimica Et Cosmochimica Acta, 90, 283–302.

    Article  CAS  Google Scholar 

  • Mukherjee, A., von Brömssen, M., Scanlon, B. R., Bhattacharya, P., Fryar, A. E., Hasan, M. A., & Sracek, O. (2008). Hydrogeochemical comparison and effects of overlapping redox zones on groundwater arsenic near the Western (Bhagirathi sub-basin, India) and Eastern (Meghna sub-basin, Bangladesh) margins of the Bengal Basin. Journal of Contaminant Hydrology, 99(1–4), 31–48.

    Article  CAS  Google Scholar 

  • Murcott, S. (2012). Arsenic contamination in the world. IWA Publishing.

    Google Scholar 

  • Naseem, S., & McArthur, J. M. (2018). Arsenic and other water-quality issues affecting groundwater, Indus alluvial plain, Pakistan. Hydrological Processes, 32(9), 1235–1253.

    Article  CAS  Google Scholar 

  • Natasha, B. I., Shahid, M., Niazi, N. K., Younas, F., Naqvi, S. R., Shaheen, S. M., & Rinklebe, J. (2021). Hydrogeochemical and health risk evaluation of arsenic in shallow and deep aquifers along the different floodplains of Punjab, Pakistan. Journal of Hazardous Materials, 402, 124074.

    Article  CAS  Google Scholar 

  • Nath, B. K., Chaliha, C., Bhuyan, B., Kalita, E., Baruah, D. C., & Bhagabati, A. K. (2018). GIS mapping-based impact assessment of groundwater contamination by arsenic and other heavy metal contaminants in the Brahmaputra River valley: A water quality assessment study. Journal of Cleaner Production, 201, 1001–1011.

    Article  CAS  Google Scholar 

  • Nath, B., Stüben, D., Mallik, S. B., Chatterjee, D., & Charlet, L. (2008). Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part I: Comparative hydrochemical and hydrogeological characteristics. Applied Geochemistry, 23(5), 977–995.

    Article  CAS  Google Scholar 

  • Naujokas, M. F., Anderson, B., Ahsan, H., Aposhian, H. V., Graziano, J. H., Thompson, C., & Suk, W. A. (2013). The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environmental Health Perspectives, 121(3), 295–302.

    Article  Google Scholar 

  • Neumann, R. B., Ashfaque, K. N., Badruzzaman, A. B. M., Ali, M. A., Shoemaker, J. K., & Harvey, C. F. (2010). Anthropogenic influences on groundwater arsenic concentrations in Bangladesh. Nature Geoscience, 3(1), 46–52.

    Article  CAS  Google Scholar 

  • Nguyen, K. P., & Itoi, R. (2009). Source and release mechanism of arsenic in aquifers of the Mekong Delta, Vietnam. Journal of Contaminant Hydrology, 103(1–2), 58–69.

    Article  CAS  Google Scholar 

  • Nickson, R., McArthur, J., Burgess, W., Ahmed, K. M., Ravenscroft, P., & Rahmanñ, M. (1998). Arsenic poisoning of Bangladesh groundwater. Nature, 395(6700), 338–338.

    Article  CAS  Google Scholar 

  • Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15(4), 403–413.

    Article  CAS  Google Scholar 

  • Nickson, R. T., McArthur, J. M., Shrestha, B., Kyaw-Myint, T. O., & Lowry, D. (2005). Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Applied Geochemistry, 20(1), 55–68.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L. (1995). User's guide to PHREEQC: A computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations (Vol. 95, No. 4227). US Department of the Interior, US Geological Survey.

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report, 99(4259), 312.

    Google Scholar 

  • Peters, S. C. (2008). Arsenic in groundwaters in the Northern Appalachian Mountain belt: A review of patterns and processes. Journal of Contaminant Hydrology, 99(1–4), 8–21.

    Article  CAS  Google Scholar 

  • Rahman, A., Siddique, A. B., Khan, R., Reza, A. S., Khan, A. H. A. N., Akbor, A., & Elius, I. B. (2022). Mechanism of arsenic enrichment and mobilization in groundwater from southeastern Bangladesh: Water quality and preliminary health risks assessment. Chemosphere, 294, 133556.

    Article  CAS  Google Scholar 

  • Ravenscroft, P., Burgess, W. G., Ahmed, K. M., Burren, M., & Perrin, J. (2005). Arsenic in groundwater of the Bengal Basin, Bangladesh: Distribution, field relations, and hydrogeological setting. Hydrogeology Journal, 13(5), 727–751.

    Article  CAS  Google Scholar 

  • Reza, A. S., Jean, J. S., Lee, M. K., Yang, H. J., & Liu, C. C. (2010). Arsenic enrichment and mobilization in the Holocene alluvial aquifers of the Chapai-Nawabganj district, Bangladesh: A geochemical and statistical study. Applied Geochemistry, 25(8), 1280–1289.

    Article  CAS  Google Scholar 

  • Rodrıguez, R., Ramos, J. A., & Armienta, A. (2004). Groundwater arsenic variations: The role of local geology and rainfall. Applied Geochemistry, 19(2), 245–250.

    Article  Google Scholar 

  • Saha, D., & Dwivedi, S. N. (2018). Groundwater availability of Northern and Southern Bank Aquifers of the Middle Ganga Plain, India. In Groundwater of South Asia (pp. 101–118). Springer.

  • Saha, D., & Sahu, S. (2016). A decade of investigations on groundwater arsenic contamination in Middle Ganga Plain, India. Environmental Geochemistry and Health, 38(2), 315–337.

    Article  CAS  Google Scholar 

  • Saha, D., Sahu, S., & Chandra, P. C. (2010a). Arsenic-safe alternate aquifers and their hydraulic characteristics in contaminated areas of Middle Ganga Plain, Eastern India. Environmental Monitoring and Assessment, 175(1), 331–348.

    Google Scholar 

  • Saha, D., Sarangam, S. S., Dwivedi, S. N., & Bhartariya, K. G. (2010b). Evaluation of hydrogeochemical processes in arsenic-contaminated alluvial aquifers in parts of Mid-Ganga Basin, Bihar, Eastern India. Environmental Earth Sciences, 61(4), 799–811.

    Article  CAS  Google Scholar 

  • Saha, N., & Rahman, M. S. (2020). Groundwater hydrogeochemistry and probabilistic health risk assessment through exposure to arsenic-contaminated groundwater of Meghna floodplain, central-east Bangladesh. Ecotoxicology and Environmental Safety, 206, 111349.

    Article  CAS  Google Scholar 

  • Sanz, E., Munoz-Olivas, R., Camara, C., Sengupta, M. K., & Ahamed, S. (2007). Arsenic speciation in rice, straw, soil, hair and nails samples from the arsenic-affected areas of Middle and Lower Ganga plain. Journal of Environmental Science and Health, Part A, 42(12), 1695–1705.

    Article  CAS  Google Scholar 

  • Schreiber, M. E., Simo, J. A., & Freiberg, P. G. (2000). Stratigraphic and geochemical controls on naturally occurring arsenic in groundwater, eastern Wisconsin, USA. Hydrogeology Journal, 8(2), 161–176.

    Article  CAS  Google Scholar 

  • Sengupta, S., Sracek, O., Jean, J. S., Lu, H. Y., Wang, C. H., Palcsu, L., & Bhattacharya, P. (2014). Spatial variation of groundwater arsenic distribution in the Chianan Plain, SW Taiwan: Role of local hydrogeological factors and geothermal sources. Journal of Hydrology, 518, 393–409.

    Article  CAS  Google Scholar 

  • Singh, C. K., Kumar, A., & Bindal, S. (2018). Arsenic contamination in Rapti River basin, Terai region of India. Journal of Geochemical Exploration, 192, 120–131.

    Article  CAS  Google Scholar 

  • Singh, S., Sharma, P., Mudhulkar, R., Chakravorty, B., & Singh, A. (2022). Assessment of hydrogeochemistry and arsenic contamination in groundwater of Bahraich District, Uttar Pradesh, India. Arabian Journal of Geosciences, 15(1), 1–18.

    Article  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    Article  CAS  Google Scholar 

  • Smith, A. H., Goycolea, M., Haque, R., & Biggs, M. L. (1998). Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water. American Journal of Epidemiology, 147(7), 660–669.

    Article  CAS  Google Scholar 

  • Spaur, M., Lombard, M. A., Ayotte, J. D., Harvey, D. E., Bostick, B. C., Chillrud, S. N., & Nigra, A. E. (2021). Associations between private well water and community water supply arsenic concentrations in the conterminous United States. Science of the Total Environment, 787, 147555.

    Article  CAS  Google Scholar 

  • Sridharan, M., & Nathan, D. S. (2018). Hydrochemical facies and ionic exchange in coastal aquifers of Puducherry region, India: Implications for seawater intrusion. Earth Systems and Environment, 1(1), 5.

    Article  Google Scholar 

  • Srivastava, A. K., Govil, P. C., Tripathi, R. M., Shukla, R. S., Srivastava, R. S., Vaish, D. P., & Nickson, R. T. (2008). Initial data on arsenic in groundwater and development of a state action plan, Uttar Pradesh, India. Groundwater for Sustainable Development Probl Perspect Chall Taylor FrancisAA Balkema London Rotterdam, 271–281.

  • Tweed, S., Massuel, S., Seidel, J. L., Chhuon, K., Lun, S., Eang, K. E., & Leblanc, M. (2020). Seasonal influences on groundwater arsenic concentrations in the irrigated region of the Cambodian Mekong Delta. Science of the Total Environment, 728, 138598.

    Article  CAS  Google Scholar 

  • USEPA. (1989). Risk Assessment Guidance for Superfund, US Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, DC Human Health Evaluation Manual (Part A) vol. I (EPA 540/1–89/002).

  • USEPA. (1999). A risk assessment—Multi way exposure spread sheet calculation tool. United States Environmental Protection Agency.

    Google Scholar 

  • USEPA. (2005). Guidelines for carcinogen risk assessment. Risk assessment forum, Washington, DC, EPA/630/P-03/001F.

  • USEPA. (2014). Human health evaluation manual, supplemental guidance: Update of standard default exposure factors, OSWER Directive, United States Environmental Protection Agency, Washington, DC, 9200.1-120.

  • von Brömssen, M., Jakariya, M., Bhattacharya, P., Ahmed, K. M., Hasan, M. A., Sracek, O., & Jacks, G. (2007). Targeting low-arsenic aquifers in Matlab Upazila, southeastern Bangladesh. Science of the Total Environment, 379(2–3), 121–132.

    Article  Google Scholar 

  • Welch, A. H., & Lico, M. S. (1998). Factors controlling As and U in shallow ground water, southern Carson Desert, Nevada. Applied Geochemistry, 13(4), 521–539.

    Article  CAS  Google Scholar 

  • Williams, V. S., Kansakar, D. R., & Ghimire, B. (2005). Nepalese groundwater arsenic contamination is related to Siwalik source rock. In Abstracts with Programs–Geol. Soc. Amer (Vol. 37, p. 170).

  • Winkel, L., Berg, M., Amini, M., Hug, S. J., & Johnson, C. A. (2008). Predicting groundwater arsenic contamination in Southeast Asia from surface parameters. Nature Geoscience, 1(8), 536–542.

    Article  CAS  Google Scholar 

  • Xing, S., Guo, H., Zhang, L., Wang, Z., & Sun, X. (2022). Silicate weathering contributed to arsenic enrichment in geotherm-affected groundwater in Pliocene aquifers of the Guide basin, China. Journal of Hydrology, 127444.

  • Yadav, S. K., Ramanathan, A. L., Kumar, M., Chidambaram, S., Gautam, Y. P., & Tiwari, C. (2020). Assessment of arsenic and uranium co-occurrences in groundwater of central Gangetic Plain, Uttar Pradesh, India. Environmental Earth Sciences, 79(6), 1–14.

    Article  Google Scholar 

  • Zheng, Y., Stute, M., Van Geen, A., Gavrieli, I., Dhar, R., Simpson, H. J., & Ahmed, K. M. (2004). Redox control of arsenic mobilization in Bangladesh groundwater. Applied Geochemistry, 19(2), 201–214.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the editor and the two reviewers for their constructive criticisms of the initial version of our manuscript. MU Khan is thankful UGC-CSIR Ph.D. fellowship. Author N Rai acknowledges partial support for this work by IIT Roorkee (Project no: FIG-100779-ESD) and institute fellowship from IITR.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

MUK: Methodology, Sample collection and analysis, Writing-Original draft preparation. NR: Conceptualization, Supervision, Writing-editing.

Corresponding author

Correspondence to N. Rai.

Ethics declarations

Conflict of interest

The authors have not disclosed any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.U., Rai, N. Distribution, geochemical behavior, and risk assessment of arsenic in different floodplain aquifers of middle Gangetic basin, India. Environ Geochem Health 45, 2099–2115 (2023). https://doi.org/10.1007/s10653-022-01321-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01321-w

Keywords

Navigation