Skip to main content

Advertisement

Log in

Understanding the processes in a historically relevant thermal and mineral spring water by using mixing and inverse geochemical models

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The thermal mineral water of Peñón de los Baños spa (Mexico City) has been used for over 500 years starting in pre-Hispanic times and is famous for the treatment of various pathologies. It has a temperature of 45 °C, which is rich in HCO3, and its main trace elements are B, Li and Fe, which confers healing effects. Concerns about the sustainability of this important spa have motivated this study to understand the thermal system, possible hydraulic and hydrochemical changes over time and its implications. Stable water isotope data indicate that the thermal water sources originate from local precipitation at Sierra de las Cruces with a recharge elevation of approximately 2770 m above sea level. The recharged water percolates through volcanic and carbonate rock formations and ascends via fault structure conduits, where it eventually is extracted 25 km downstream in Peñon de los Baños. During the gravity-driven deep circulation of up to 4.9 km, the groundwater is heated up to 136–160 °C. A comparison of past and current water levels and water chemical analyses indicates a water table drop and few variations in the chemical composition, confirming the presence of anthropic impact on water quality. Due to the heavy groundwater extractions in Mexico City, the spring water flow has ceased, and water must be pumped now from a 203-m deep well. In addition, the concentration of bicarbonate, sodium and chloride has been reduced by half since the onset of groundwater development. The therapeutic effects of this thermal mineral water are at risk due to the alteration of the chemical signature. However, new and different therapeutical uses may prevent a future deterioration or closure of this historically important thermal spa. It is crucial to establish a monitoring program of the thermal mineral water and reducing or minimizing nearby urban extractions which tap the regional flow component to preserve the properties of the thermal water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

taken from Arce et al. (2019). Section A–A’ denotes the vertical section shown in Fig. 2

Fig. 2

taken from Arce et al. (2019)

Fig. 3

taken from Cortés et al. (1989); Ranchito 2 and Springs samples were measurements in 2018

Fig. 4

taken from Cortés et al. (1989)

Fig. 5

taken from Florez-Peñaloza (2019))

Similar content being viewed by others

References

  • Ako, A. A., Shimada, J., Hosono, T., Kagabu, M., Ayuk, A. R., Nkeng, G. E., Eyong, G. E. T., & Takounjou, A. L. F. (2012). Spring water quality and usability in the Mount Cameroon area revealed by hydrogeochemistry. Environmental Geochemistry and Health, 34, 615–639. https://doi.org/10.1007/s10653-012-9453-3

    Article  CAS  Google Scholar 

  • Albu, M., Banks, D., Nash, H. (1997). Mineral and thermal groundwater resources, 1st ed. UK.

  • Alçiçek, H., Bülbül, A., Yavuzer, İ, & Cihat Alçiçek, M. (2019). Origin and evolution of the thermal waters from the Pamukkale Geothermal Field (Denizli Basin, SW Anatolia, Turkey): Insights from hydrogeochemistry and geothermometry. Journal of Volcanology and Geothermal Research, 372, 48–70. https://doi.org/10.1016/j.jvolgeores.2018.09.011

    Article  CAS  Google Scholar 

  • Altman, N. (2000). Healing springs: The ultimate guide to taking the waters. Healing Arts Press.

  • André, L., Franceschi, M., Pouchan, P., & Atteia, O. (2005). Using geochemical data and modelling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, south-west of France. Journal of Hydrology, 305, 40–62. https://doi.org/10.1016/j.jhydrol.2004.08.027

    Article  CAS  Google Scholar 

  • Appelo, C. A. J., Postma, D. (2005). Geochemistry, groundwater and pollution, 2nd ed.

  • Araujo, A. R. T. S., Sarraguça, M. C., Ribeiro, M. P., & Coutinho, P. (2017). Physicochemical fingerprinting of thermal waters of Beira Interior region of Portugal. Environmental Geochemistry and Health, 39, 483–496. https://doi.org/10.1007/s10653-016-9829-x

    Article  CAS  Google Scholar 

  • Arce, J. L., Layer, P. W., Macías, J. L., Morales-Casique, E., García-Palomo, A., Jiménez-Domínguez, F. J., Benowitz, J., & Vásquez-Serrano, A. (2019). Geology and stratigraphy of the Mexico Basin (Mexico City), central Trans-Mexican Volcanic Belt. Journal of Maps. https://doi.org/10.1080/17445647.2019.1593251

    Article  Google Scholar 

  • Arce, J. L., Layer, P. W., Martínez, I., Salinas, J. I., Macías-Romo, M. C., Morales-Casique, E. J. Lenhardt, N., Macías-Romo, M. del C., Morales-Casique, E., Benowitz, J., Escolero, O., Lenhardt, N. (2015). Geología y estratigrafía del pozo profundo San Lorenzo Tezonco y de sus alrededores, sur de la Cuenca de México. Bol. la Soc. Geológica Mex. 67, 123–143.

  • Arce, J. L., Layer, P. W., Morales-Casique, E., Benowitz, J. A., Rangel, E., & Escolero, O. (2013). New constraints on the subsurface geology of the Mexico City Basin: The San Lorenzo Tezonco deep well, on the basis of 40Ar/39Ar geochronology and whole-rock chemistry. Journal of Volcanology and Geothermal Research, 266, 34–49. https://doi.org/10.1016/j.jvolgeores.2013.09.004

    Article  CAS  Google Scholar 

  • Arnórsson, S., & Andrésdóttir, A. (1995). Processes controlling the distribution of boron and chlorine in natural-waters in Iceland. Geochimica Et Cosmochimica Acta, 59, 4125–4146.

    Article  Google Scholar 

  • Aveleyra, L. Arroyo de Anda. (2005). El Peñón de los Baños y la leyenda de Copil. CNCA-INAH, Mexico, DF.

  • Awadh, S. M., & Al-Ghani, S. A. (2014). Assessment of sulfurous springs in the west of Iraq for balneotherapy, drinking, irrigation and aquaculture purposes. Environmental Geochemistry and Health, 36, 359–373. https://doi.org/10.1007/s10653-013-9555-6

    Article  CAS  Google Scholar 

  • Bačová, N., Németh, Z., & Repčiak, M. (2016). Mineral waters of the Dudince Spa. Slovak Geology Magazine, 16, 125–147.

    Google Scholar 

  • Bahri, F., & Saibi, H. (2012). Characterization, classification, bacteriological, and evaluation of groundwater from 24 wells in six departments of Algeria. Arabian Journal of Geosciences, 5, 1449–1458.

    Article  CAS  Google Scholar 

  • Ballantyne, J. M., & Moore, J. N. (1988). Arsenic geochemistry in geothermal systems. Geochimica et Cosmochimica Acta, 52, 475–483.

    Article  CAS  Google Scholar 

  • Battistel, M., Muniruzzaman, M., Onses, F., Lee, J., & Rolle, M. (2019). Reactive fronts in chemically heterogeneous porous media: Experimental and modeling investigation of pyrite oxidation. Applied Geochemistry, 100, 77–89. https://doi.org/10.1016/j.apgeochem.2018.10.026

    Article  CAS  Google Scholar 

  • Blasco, M., Gimeno, M. J., & Auqué, L. F. (2018). Low temperature geothermal systems in carbonate-evaporitic rocks: Mineral equilibria assumptions and geothermometrical calculations. Insights from the Arnedillo thermal waters (Spain). Science of the Total Environment, 615, 526–539. https://doi.org/10.1016/j.scitotenv.2017.09.269

    Article  CAS  Google Scholar 

  • Browne, P. R. L. (1978). Hydrotermal alteration in active geothermal fiels. Annual Review of Earth and Planetary Sciences, 6, 229–250.

    Article  CAS  Google Scholar 

  • Carrera, J., Vázquez-Suñé, E., Castillo, O., & Sánchez-Vila, X. (2004). A methodology to compute mixing ratios with uncertain end-members. Water Resources Research, 40, 1–11. https://doi.org/10.1029/2003WR002263

    Article  Google Scholar 

  • Carrillo, N. (1947). Influence of artesian wells in the sinking of Mexico City, Comisión Impulsora y Coordinadora de la Investigación Científica, Anuario 47, in Volumen Nabor Carrillo, 7–14, Secretaria de Hacienda y Crédito Público, México, 1969.

  • Christophersen, N., & Hooper, R. P. (1992). Multivariate analysis of stream water chemical data: The use of principal components analysis for the end-member mixing problem. Water Resources Research, 28, 99–107. https://doi.org/10.1029/91WR02518

    Article  CAS  Google Scholar 

  • Clark, I. D., Fritz, P. (1997). Environmental isotopes in hydrogeology. New York.

  • Cortés, A., Arizabalo, R. D., & Rocha, R. (1989). Estudio hidrogeoquímico isotópico de Manantialese en la Cuenca de México. Geofisica International, 28, 265–282.

    Article  Google Scholar 

  • Cortés, A., & Durazo, J. (2001). Sobre la cerradura hidrogeológica de la cuenca de México. Ing. Hidráulica en México XVI, 195–198.

  • Cortés, A., Durazo, J., & Farvolden, R. N. (1997). Studies of isotopic hydrology of the basin of Mexico and vicinity: Annotated bibliography and interpretation. Journal of Hydrology, 198, 346–376. https://doi.org/10.1016/S0022-1694(96)03273-8

    Article  Google Scholar 

  • Cressie, N. (1993). Statistics for spatial data. Wiley, New York.

  • DDF (Departamento del Distrito Federal). (1984). Actividades geohidrológicas en el Valle de México. Dirección General de Construcción y Operación Hidráulica. Elaborated by Lesser and Asociados S. A. Vol. I, II.

  • De la O Carreño, A. (1954). Las provincias geohidrologicas de Mexico. Bol. del Inst. Geol. 56, 166.

  • Demer, S., Elitok, Ö., & Memiş, Ü. (2019). Origin and geochemical evolution of groundwaters at the northeastern extend of the active Fethiye-Burdur fault zone within the ophiolitic Teke nappes SW, Turkey. Arab. J. Geosci. https://doi.org/10.1007/s12517-019-4963-2

    Article  Google Scholar 

  • Durazo, J., & Farvolden, R. N. (1989). The groundwater regime of the Valley of Mexico from historic evidence and field observations. Journal of Hydrology, 112, 171–190. https://doi.org/10.1016/0022-1694(89)90187-X

    Article  Google Scholar 

  • Edmunds, W. M., Carrillo-Rivera, J. J., & Cardona, A. (2002). Geochemical evolution of groundwater beneath Mexico City. Journal of Hydrology, 258, 1–24. https://doi.org/10.1016/S0022-1694(01)00461-9

    Article  CAS  Google Scholar 

  • Edmunds, W. M., Cook, J. M., Kinniburgh, D. H. (1989). Trace-elements ocurrences in British groundwaters. Br. Geol. Surv. Res. Rep. SD/89/3.

  • Edmunds, W. M., Savage, D. (1991). Geochemical characteristics of groundwater in granite and related rocks. In R. A. Downing, W. B. Wilkinson (Eds.), Applied Groundwater Hydrology; a British Perspective. Clarendon Press, Oxford.

  • Edmunds, W. M., & Smedley, P. L. (2000). Residence time indicators in groundwater: The East Midlands Triassic sandstone aquifer. Appl. Geochemistry, 15, 737–752. https://doi.org/10.1016/S0883-2927(99)00079-7

    Article  CAS  Google Scholar 

  • Edmunds, W. M., Smedley, P. L. (1996). Groundwater geochemistry and health: an overview. Geological Society of London, Spec. Publ. 113, 91–105. https://doi.org/10.1144/GSL.SP.1996.113.01.08

  • Enciso-De la Vega, S. (1992). Propuesta de nomenclatura estratigráfica para la cuenca de México. Rev. Mex. Ciencias Geol., 10, 26–36.

    Google Scholar 

  • Escolero, O. (2018). Sistemas regionales de flujo de agua subterránea en México, 1st ed. Jiutepec, Morelos. 237–239

  • Escolero, O., Herrera, T. C., & Pedrozo, A. A. (2021). Agua que no has de beber… no la tires. Rev. Mex. Ciencias, 72, 8–17.

    Google Scholar 

  • Espinosa-Soriano, J. H. (2021). Personal communication of unpublished information.

  • Evans, J., O’Hare, J. P., & Weston, C. (1986). Haemodynamic changes in man at diferent temperatures of water inmersion. Clinical Science, 70, 513.

    Article  Google Scholar 

  • Fagundo, J. R., Gonzalez, P. (2005). Hidrogeoquímica. La Habana, Cuba. 314

  • Florez-Peñaloza, J. R. (2019). Análisis del comportamiento histórico de la red de flujo de agua subterránea en la cuenca de México. Master thesis Universidad Nacional Autónoma de México. http://132.248.9.195/ptd2019/octubre/0797179/Index.html

  • Fournier, R. O. (1977). Chemical geothermometers and mixing models for geothermal systems. Geothermics, 5, 41–50. https://doi.org/10.1016/0375-6505(77)90007-4

    Article  CAS  Google Scholar 

  • Fournier, R. O., & Truesdell, A. H. (1973). An empirical Na–K–Ca geothermometer for natural waters. Geochimica Et Cosmochimica Acta, 37, 1255–1275. https://doi.org/10.1016/0016-7037(73)90060-4

    Article  CAS  Google Scholar 

  • Franke, R. (1982). Scattered data interpolation: Tests of some methods. Mathematics of Computation, 38, 181–181. https://doi.org/10.1090/S0025-5718-1982-0637296-4

    Article  Google Scholar 

  • Franko, O., Gazda, S., Michalicek, M. (1975). Tvorba a klasifikácia minerálnych vôd Západných Karpát. Bratislava. Geologicky Ustav Dionyza Stura. 230

  • Freeze, R. A. A., & Cherry, J. J. A. (1979). Groundwater. Prentice-Hall Inc.

    Google Scholar 

  • Fries, C. J. (1960). Geología del Estado de Morelos y de partes adyacentes de México y Guerrero. Región central meridional de México. Bol. del Inst. Geol. 60, 234.

  • García-Palomo, A., Zamorano, J. J., López-Miguel, C., Galván-García, A., Carlos-Valerio, V., Ortega, R., & Macías, J. L. (2008). El arreglo morfoestructural de la Sierra de Las Cruces, México Central. Rev. Mex. Ciencias Geol., 25, 158–178.

    Google Scholar 

  • Garrels, R. M. (1967). Genesis of some ground waters from igneous rocks. Research Geochemistry, 2, 405–420.

    Google Scholar 

  • Gastmans, D., Hutcheon, I., Menegário, A. A., & Chang, H. K. (2016). Geochemical evolution of groundwater in a basaltic aquifer based on chemical and stable isotopic data: Case study from the Northeastern portion of Serra Geral Aquifer, São Paulo state (Brazil). Journal of Hydrology, 535, 598–611. https://doi.org/10.1016/j.jhydrol.2016.02.016

    Article  CAS  Google Scholar 

  • Gayol, R. (1925). Estudio de las perturbaciones que en el fondo del valle de México ha producido el drenaje de las aguas del subsuelo por las obras del desague, y rectificación de los errores a los que ha dado lugar una incorrecta interpretación de los hechos observados. Rev. Mex. Ing. Y Arquit., 3, 96–132.

    Google Scholar 

  • Ghezzi, L., Petrini, R., Montomoli, C., Carosi, R., Paudyal, K., & Cidu, R. (2017). Findings on water quality in Upper Mustang (Nepal) from a preliminary geochemical and geological survey. Environment and Earth Science, 76, 651. https://doi.org/10.1007/s12665-017-6991-0

    Article  CAS  Google Scholar 

  • Goguel, R. (1983). The rare alkalies in hydrothermal alteration at Wairakei and Broadlands, geothermal fields, N.Z. Geochimica et Cosmochimica Acta, 47, 429–437. https://doi.org/10.1016/0016-7037(83)90265-X

    Article  CAS  Google Scholar 

  • Gómez, P., & Turrero, M. P. J. (1994). Una revision de los procesos geoquímicos de baja temperatura en la interacción agua-roca. Estud. Geológicos, 50, 345–357.

    Google Scholar 

  • Gonfiantini, R. (1972). Notes on isotope hydrology. Internal Report.

    Google Scholar 

  • González-Partida, E., Carrillo-Chávez, A., Levresse, G., Tello-Hinojosa, E., Venegas-Salgado, S., Ramirez-Silva, G., Pal-Verma, M., Tritlla, J., & Camprubi, A. (2005). Hydro-geochemical and isotopic fluid evolution of the Los Azufres geothermal field. Central Mexico. Appl. Geochemistry, 20, 23–39. https://doi.org/10.1016/j.apgeochem.2004.07.006

    Article  CAS  Google Scholar 

  • González-Torres, E. A., Morán Zenteno, D. J., Mori, L., Martiny, B. M. (2015). Revisión de los últimos eventos magmáticos del Cenozoico del sector norte-central de la Sierra Madre del Sur y su posible conexión con el subsuelo profundo de la Cuenca de México. Boletín la Soc. Geológica Mex. 67, 285–297. https://doi.org/10.18268/bsgm2015v67n2a11

  • Gu, H., Ma, F., Guo, J., Zhao, H., Lu, R., & Liu, G. (2017). A spatial mixing model to assess groundwater dynamics affected by mining in a coastal fractured aquifer, China. Mine Water Environment, 37, 405–420. https://doi.org/10.1007/s10230-017-0505-x

    Article  CAS  Google Scholar 

  • Gysi, A. P., & Stefánsson, A. (2012). Experiments and geochemical modeling of CO2 sequestration during hydrothermal basalt alteration. Chemical Geology, 306–307, 10–28. https://doi.org/10.1016/j.chemgeo.2012.02.016

    Article  CAS  Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water, Geological Survey Water- Supply Paper. Alexandria, Virginia, U.S. 2254

  • Henley, R. W., & Ellis, A. J. (1983). Geothermal systems ancient and modern: A geochemical review. Earth-Science Reviews, 19, 1–50. https://doi.org/10.1016/0012-8252(83)90075-2

    Article  CAS  Google Scholar 

  • Hoefs, J. (1997). Stable isotope geochemistry.

    Book  Google Scholar 

  • Hövelmann, J., Austrheim, H., & Jamtveit, B. (2012). Microstructure and porosity evolution during experimental carbonation of a natural peridotite. Chemical Geology, 334, 254–265. https://doi.org/10.1016/j.chemgeo.2012.10.025

    Article  CAS  Google Scholar 

  • Jean-Baptiste, P., Allard, P., Fourré, E., Bani, P., Calabrese, S., Aiuppa, A., Gauthier, P. J., Parello, F., Pelletier, B., & Garaebiti, E. (2016). Spatial distribution of helium isotopes in volcanic gases and thermal waters along the Vanuatu (New Hebrides) volcanic arc. Journal of Volcanology and Geothermal Research, 322, 20–29. https://doi.org/10.1016/j.jvolgeores.2015.09.026

    Article  CAS  Google Scholar 

  • Jean-Baptiste, P., Allard, P., Fourré, E., Parello, F., & Aiuppa, A. (2014). Helium isotope systematics of volcanic gases and thermal waters of Guadeloupe Island, Lesser Antilles. Journal of Volcanology and Geothermal Research, 283, 66–72. https://doi.org/10.1016/j.jvolgeores.2014.07.003

    Article  CAS  Google Scholar 

  • Jiménez-Domínguez, Fernando de Jesús. (2020). Bachelor thesis in process. Instituto Politecnico Nacional.

  • Kapucu, S., Özgür, N., Çalışkan, T. A., & Abubakar, I. I. (2017). Hydrogeological, hydrogeochemical and isotope geochemical faetures of thermal waters in Kuşadası, Turkey. Procedia Earth Planetary Science, 17, 185–188. https://doi.org/10.1016/j.proeps.2016.12.061

    Article  Google Scholar 

  • Katz, B. G., Coplen, T. B., Bullen, T. D., & Davis, J. H. (1997). Use of chemical and isotopic tracers to characterize the interactions between ground water and surface water in mantled karst. Ground Water, 35, 1014–1028. https://doi.org/10.1111/j.1745-6584.1997.tb00174.x

    Article  CAS  Google Scholar 

  • Kreitsmann, T., Külaviir, M., Lepland, A., Paiste, K., Paiste, P., Prave, A. R., Sepp, H., Romashkin, A. E., Rychanchik, D. V., & Kirsimäe, K. (2019). Hydrothermal dedolomitisation of carbonate rocks of the Paleoproterozoic Zaonega Formation, NW Russia: Implications for the preservation of primary C isotope signals. Chemical Geology, 512, 43–57. https://doi.org/10.1016/j.chemgeo.2019.03.002

    Article  CAS  Google Scholar 

  • Li, X., Huang, X., Liao, X., & Zhang, Y. (2020). Hydrogeochemical characteristics and conceptual model of the geothermal waters in the Xianshuihe fault zone, Southwestern China. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph17020500

    Article  Google Scholar 

  • Mahlknecht, J., Hirata, R., Ledesma-Ruiz, R. (2015). Water and Cities in Latin America, Water and Cities in Latin America: Challenges for Sustainable Development. Routledge. 298 https://doi.org/10.4324/9781315848440

  • Mao, X., Wang, H., & Feng, L. (2018). Impact of additional dead carbon on the circulation estimation of thermal springs exposed from deep-seated faults in the Dongguan basin, southern China. Journal of Volcanology and Geothermal Research, 361, 1–11. https://doi.org/10.1016/j.jvolgeores.2018.08.002

    Article  CAS  Google Scholar 

  • Marshall, J. S. (2007). Geomorpholgy and physiographic provinces of central America. In J. Bundschuh & G. Alvarado (Eds.), Central America: Geology, Resources, and Hazards (p. 402). Taylor & Francis.

    Google Scholar 

  • Martínez-Florentino, T. A. K., Esteller-Alberich, M. V., Expósito, J. L., Domínguez-Mariani, E., & Morales-Arredondo, J. I. (2021). Hydrogeochemistry and geothermometry of thermal springs in the eastern Trans-Mexican Volcanic Belt. Geothermics, 96, 102176. https://doi.org/10.1016/j.geothermics.2021.102176

    Article  Google Scholar 

  • Martinez, S., Escolero, O., & Perevochtchikova, M. (2015). A comprehensive approach for the assessment of shared aquifers: The case of Mexico City. Sustainable Water Resources Management. https://doi.org/10.1007/s40899-015-0010-y

    Article  Google Scholar 

  • Matz, H., Orion, E., & Wolf, R. (2003). Balneotherapy in dermatology. Dermatologic Therapy, 16, 132–140.

    Article  Google Scholar 

  • Melloris, L. (2001). Mineral Waters at Dudince Spa. In P. E. LaMoreaux & J. T. Tanner (Eds.), Springs and Bottled Waters of the World (pp. 223–226). Springer.

    Google Scholar 

  • Mona, J. (2020). Análisis Isotópico De Las Aguas Subterráneas de la Cuenca de México. Master thesis. UNAM. http://132.248.9.195/ptd2020/septiembre/0803737/Index.html

  • Mook, W. G., Bommerson, J. C., & Staverman, W. H. (1974). Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters, 22, 169–176.

    Article  CAS  Google Scholar 

  • Morales-Casique, E., Arce-Saldaña, J. L., Lezama-Campos, J. L., Escolero, O. (2019). Análisis de la estratigrafía y las características hidrogeológicas de los estratos profundos que conforman el subsuelo de la Cuenca de México a partir de la perforación a 2000 m del pozo profundo denominado " Santa Catarina 3a " Informe final. 74 https://www.geologia.unam.mx/igl/publs/boletin/Boletin123.pdf

  • Morales-Casique, E., Arce, J., Lezama-Campos, J., Escolero, O. (2018). Análisis de la estratigrafía y las características hidrogeológicas de los estratos profundos que conforman el subsuelo de la cuenca de México a partir de la perforación de dos pozos profundos, uno a 2000 m y otro a 1570 m denominados Agrícola Oriental no 2B and 2C, Boletín del Instituto de Geología. 105. https://www.geologia.unam.mx/igl/publs/boletin/Boletin121.pdf

  • Morales-Casique, E., Escolero, O. A., & Arce, J. L. (2014). Resultados del pozo San Lorenzo Tezonco y sus implicaciones en el entendimiento de la hidrogeología regional de la cuenca de México. Rev. Mex. Ciencias Geol., 31, 64–75.

    Google Scholar 

  • Morales-Casique, E., Guinzberg-Belmont, J., & Ortega-Guerrero, A. (2016). Regional groundwater flow and geochemical evolution in the Amacuzac River Basin, Mexico. Hydrogeology Journal, 24, 1873–1890. https://doi.org/10.1007/s10040-016-1423-x

    Article  CAS  Google Scholar 

  • Munk, L. A., Hynek, S. A., Bradley, D. C., Boutt, D., Labay, K., Jochens, H. (2016). Lithium Brines: A global perspective. In P. L. Verplanck, M. W. Hitzman (Eds.), Rare earth and critical elements in ore deposits. Society of Economic Geologists, pp. 339–365. https://doi.org/10.5382/Rev.18.14

  • Munteanu, C. (2011). Bãile Herculane Resort. Balneo Res. J. 2, 17–23. https://doi.org/10.12680/balneo.2011.1020

  • Nordstrom, D. K., Ball, J. W., Donahoe, R. J., & Whittemore, D. (1989). Groundwater chemistry and water-rock interactions at Stripa. Geochimica Et Cosmochimica Acta, 53, 1727–1740.

    Article  CAS  Google Scholar 

  • O’Hare, J. P., Haywood, A., Millar, N. D. (1991). Physiology of inmersion in thermal waters. In Kellaway, G. A. (Ed.), Hot Springs of Bath. Bath City Council, p. 71.

  • Olea-Olea, S., Escolero, O., Mahlknecht, J., Ortega, L., Silva-aguilera, R., Florez-peñaloza, J. R., Perez-quezadas, J., & Zamora-martinez, O. (2020a). Identification of the components of a complex groundwater flow system subjected to intensive exploitation. Journal of South American Earth Sciences. https://doi.org/10.1016/j.jsames.2019.102434

    Article  Google Scholar 

  • Olea-Olea, S., Escolero, O., Mahlknecht, J., Ortega, L., Taran, Y., Moran-Zenteno, D. J., Zamora-Martinez, O., & Tadeo-Leon, J. (2020b). Water-rock interaction and mixing processes of complex urban groundwater flow system subject to intensive exploitation: The case of Mexico City. Journal of South American Earth Sciences, 103, 102719. https://doi.org/10.1016/j.jsames.2020.102719

    Article  CAS  Google Scholar 

  • Ortega, G. A., & Farvolden, R. N. (1989). Computer analysis of regional groundwater flow and boundary conditions in the basin of Mexico. Journal of Hydrology, 110, 271–294. https://doi.org/10.1016/0022-1694(89)90192-3

    Article  Google Scholar 

  • Pardo, M., & Suárez, G. (1995). Shape of the subducted Rivera and Cocos plates in southern Mexico: Seismic and tectonic implications. Journal of Geophysical Research., 100(B7), 355–367.

    Article  Google Scholar 

  • Parkhurst, D. L., Appelo, C. A. J. (2013). Description of input and examples for PHREEQC version 3: A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In Methods, U.G.S.T. and (Ed.), Book 6, Chap A43, Vol. 3. p. 504.

  • Parkhurst, D. L., Appelo, C. A. J. (1999). User’s guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical Calculations, Unites States Geological Survey. Washingyon DC.

  • Parkhurst, D. L., Thorstenson, D. C., Plummer, L. N. (1980). PHREEQE-A computer program for geochemical calculations, Unites States Geological Survey-Resources Invvestigation Report, pp. 80–96.

  • Pasvanoğlu, S. (2020). Geochemistry and conceptual model of thermal waters from Erciş - Zilan Valley, Eastern Turkey. Geothermics, 86, 101803. https://doi.org/10.1016/j.geothermics.2020.101803

    Article  Google Scholar 

  • Pasvanoğlu, S. (2014). Geochemistry of thermal waters in Eastern Anatolia: A case study of Diyadin (Ağrı) and Erciş-Zilan (Van) In: A. Baba, J. Bundschuh, D. Chandrasekharam (Eds.), Geothermal systems and energy resources: Turkey and Greece. sustainable energy development series. CRC Press, Taylor & Francis Group. 28

  • Pasvanoğlu, S., & Çelik, M. (2019). Hydrogeochemical characteristics and conceptual model of Çamlıdere low temperature geothermal prospect, northern Central Anatolia. Geothermics, 79, 82–104. https://doi.org/10.1016/j.geothermics.2019.01.004

    Article  Google Scholar 

  • Perez-Cruz, G. A. (1988). Estudio Sismológico de Reflexión del Subsuelo de la Ciudad de México. Master thesis. UNAM. http://132.248.9.195/pmig2018/0074449/Index.html

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretation of water analyses. Transactions. American Geophysical Union, 25, 914–924.

    Article  Google Scholar 

  • Ponta, G., Povară, I., Isverceanu, E. G., Onac, B. P., Marin, C., & Tudorache, A. (2013). Geology and dynamics of underground waters in Cerna Valley/Băile Herculane (Romania). Carbonates and Evaporites, 28, 31–39. https://doi.org/10.1007/s13146-013-0149-2

    Article  Google Scholar 

  • Povară, I., Conovici, M., Munteanu, Cristian-Mihai Marin., C., Ioniţă, E. D. (2015). Karst systems within the Southern Carpathians Structure (Romania). Carpathian Journal of Earth Environment Science, 10, 5–17.

  • Povară, I., Simion, G., & Marin, C. (2008). Thermo-mineral waters from the Cerna Valley Basin (Romania). Stud. Univ. Babes-Bolyai, Geol., 53, 41–54. https://doi.org/10.5038/1937-8602.53.2.4

    Article  Google Scholar 

  • Rai, S. M., Bhattarai, T. N., & Khatiwada, D. (2020). Hot water springs (thermal springs) in Nepal: A review on their location, origin, and importance. Journal of Development Innovations, 4, 24–42.

    Google Scholar 

  • Reyes, A. G. (1990). Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment. Journal of Volcanology and Geothermal Research, 43, 279–309.

    Article  CAS  Google Scholar 

  • Reyes, A. G., & Trompetter, W. J. (2012). Hydrothermal water-rock interaction and the redistribution of Li, B and Cl in the Taupo Volcanic Zone, New Zealand. Chemical Geology, 314–317, 96–112. https://doi.org/10.1016/j.chemgeo.2012.05.002

    Article  CAS  Google Scholar 

  • Salem, O., Visser, J. H., Dray, M., Gonfiantini, R. (1980). Groundwater flow patterns in the western Lybian Arab Jamahiriaya. In IAEA (Ed.), Arid-Zone Hydrology: Investigations with Isotope Techniques. Vienna, pp. 165–179.

  • Schoeller, H. (1962). Les eaux souterraines: hydrologie dynamique et chimique recherche, exploitation et évaluation des ressources. Paris. 642

  • SHCP (1969). El hundimiento de la ciudad de México, Proyect Texcoco. Volumen Nabor Carillo. 328.

  • Shvartsev, S. L., Sun, Z., Borzenko, S. V., Gao, B., Tokarenko, O. G., & Zippa, E. V. (2018). Geochemistry of the thermal waters in Jiangxi Province, China. Applied Geochemistry, 96, 113–130. https://doi.org/10.1016/j.apgeochem.2018.06.010

    Article  CAS  Google Scholar 

  • Sracek, O., Rahobisoa, J. J., Trubač, J., Buzek, F., Andriamamonjy, S. A., & Rambeloson, R. A. (2019). Geochemistry of thermal waters and arsenic enrichment at Antsirabe, Central Highlands of Madagascar. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2019.06.067

    Article  Google Scholar 

  • Stevanovic, Z. (2010). Utilization and regulation of springs. In Groundwater hydrology of springs. Elsevier, pp. 339–388. https://doi.org/10.1016/B978-1-85617-502-9.00009-8

  • Thomson, W., William, A. R. (1978). Spas that heal, 1st ed. London. 232.

  • Unda Lopez, J. A. (2016). Construcción y correlación de columnas geologícas de los pozos profundos del Valle de México. Bachelor thesis. UNAM. http://132.248.9.195/ptd2016/enero/0739455/Index.html

  • United Nations (2018). Revision of World Urbanization Prospects [WWW Document]. https://population.un.org/wup/. Accessed 1 Oct 2019.

  • Université d’Ottawa, C. (n.d). Chapter 5 Geochemical Weathering [WWW Document]. https://mysite.science.uottawa.ca/idclark/GEO4342/2009/Weathering.pdf

  • Vásquez-Serrano, A., Camacho-Rangel, R., Arce-Saldaña, J. L., Morales-Casique, E. (2019). Análisis de fracturas geológicas en el pozo Agrícola Oriental 2C, Ciudad de México y su relación con fallas mayores. Rev. Mex. Ciencias Geol. 36, 38–53. https://doi.org/10.22201/cgeo.20072902e.2019.1.871

  • Veremchuk, L. V., Chelnokova, B. I., Barskova, L. S., Gvozdenko, T. A., Kukayev, I. V., Savochkina, N. L. (2017). The therapeutic and recreational potential of the “Goryachy Plyazh” physiotherapeutic facility on the Kunashir island. Vopr. Kurortol. Fizioter. i Lech. Fiz. kul’tury 94, 32. https://doi.org/10.17116/kurort201794632-37

  • Verma, S. P., & Santoyo, E. (1997). New improved equations for Na/K, Na/Li and SiO2 geothermometers by outlier detection and rejection. Journal of Volcanology and Geothermal Research, 79, 9–23. https://doi.org/10.1016/S0377-0273(97)00024-3

    Article  CAS  Google Scholar 

  • Walraevens, K., Bakundukize, C., Mtoni, Y. E., & Van Camp, M. (2018). Understanding the hydrogeochemical evolution of groundwater in Precambrian basement aquifers: A case study of Bugesera region in Burundi. Journal of Geochemical Exploration, 188, 24–42. https://doi.org/10.1016/j.gexplo.2018.01.003

    Article  CAS  Google Scholar 

  • Wrage, J., Tardani, D., Reich, M., Daniele, L., Arancibia, G., Cembrano, J., Sánchez-Alfaro, P., Morata, D., & Pérez-Moreno, R. (2017). Geochemistry of thermal waters in the Southern Volcanic Zone, Chile: Implications for structural controls on geothermal fluid composition. Chemical Geology, 466, 545–561. https://doi.org/10.1016/j.chemgeo.2017.07.004

    Article  CAS  Google Scholar 

  • Xun, Z., Bin, F., Haiyan, Z., Juan, L., & Ying, W. (2009). Isotopes of deuterium and oxygen-18 in thermal groundwater in China. Environmental Geology, 57, 1807–1814. https://doi.org/10.1007/s00254-008-1468-9

    Article  CAS  Google Scholar 

  • Yang, P., Luo, D., Hong, A., Ham, B., Xie, S., Ming, X., Wang, Z., & Pang, Z. (2019). Hydrogeochemistry and geothermometry of the carbonate-evaporite aquifers controlled by deep-seated faults using major ions and environmental isotopes. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2019.124116

    Article  Google Scholar 

  • Zheng, X., Duan, C., Xia, B., Jiang, Y., & Wen, J. (2019). Hydrogeochemical modeling of the shallow thermal water evolution in Yangbajing geothermal field, Tibet. Journal of Earth Science, 30, 870–878. https://doi.org/10.1007/s12583-016-0918-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Jorge Heber Espinosa Soriano, manager of the thermal and medicinal Peñón de los Baños spa, for his disposition and assistance during the sampling campaign and provision of historical data.

Funding

This research was financially supported by the Program of Support for Research and Technological Innovation Projects – Programa de apoyo a proyectos de investigación e inovación tecnológica (PAPIIT) of the Nacional Autonomous University of Mexico (UNAM), Project Number IN106421, partially supported by the International Atomic Energy Agency by means of IAEA Research Contract No: 23189 and by de Secretaría de Educación, Ciencia, Tecnología.e Innovación del Gobierno de la Ciudad de México (SECTEI) Project number SECTEI/198/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selene Olea-Olea.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olea-Olea, S., Escolero, O., Mahlknecht, J. et al. Understanding the processes in a historically relevant thermal and mineral spring water by using mixing and inverse geochemical models. Environ Geochem Health 44, 2301–2323 (2022). https://doi.org/10.1007/s10653-021-01166-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01166-9

Keywords

Navigation