Skip to main content

Advertisement

Log in

Urban geochemistry and potential human health risks in the Metropolitan Area of Buenos Aires: PAHs and PCBs in soil, street dust, and bulk deposition

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Soil, street dust, and bulk deposition (dry and wet deposition) were collected in the Metropolitan Area of Buenos Aires (MABA), Argentina, to assess the polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) pollution and the potential risks to human health. Compared with other countries, the mean concentration of PAHs and PCBs in surface soils, street dust and bulk deposition of MABA were at a low or moderate level. Average PAHs and PCBs concentrations in bulk deposition (5.7 ± 5.1 and 0.41 ± 0.25 µg g−1, respectively) were five and ten times higher than those of soil (1.08 ± 0.98 and 0.02 ± 0.01 µg g−1) and street dust (1.2 ± 0.95 and 0.04 ± 0.03 µg g−1), respectively. Different compositional profiles, observed in the three matrices for both groups of contaminants, could be attributed to dissimilar source contribution, partition processes between gas and particulate phases, and transformation. The most contaminated bulk deposition presented higher values for cancer and non-cancer risks relative to soil and street dust. In all matrices, non-carcinogenic risks were below the safety threshold (HI < 1). Regarding carcinogenic risks, exposure to both bulk deposition and soil indicated a moderated potential for cancerous development (Incremental lifetime cancer risk ~ 3.0 × 10−6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen, J., Dookeran, N., Smith, K., Sarofim, A., & Lafleur, A. (1996). Measurement of aerosols in Massachusetts. Environmental Science and Technology, 30, 1023–1031.

    Article  CAS  Google Scholar 

  • Astoviza, M., Cappelletti, N., Bilos, C., Migoya, C., & Colombo, J. C. (2016). Airborne PCB patterns and urban scale in the Southern Río de la Plata. Science of the Total Environment, 572, 16–22.

    Article  CAS  Google Scholar 

  • ATSDR. (2000). Toxicological profile for Polychlorinated Biphenyls (PCBs) U.S. Atlanta, Georgia: Department of Health and Human Services, Public Health Service Agency for Toxic Substances and Disease Registry.

  • Cabrerizo, A., & Jones, K. (2011). Factors influencing the soil–air partitioning and the strength of soils as a secondary source of polychlorinated biphenyls to the atmosphere. Environmental Science and Technology, 45, 4785–4792.

    Article  CAS  Google Scholar 

  • Cachada, A., Pato, P., Rocha-santos, T., Ferreira da Silva, E., & Duarte, C. (2012). Levels, sources and potential human health risks of organic pollutants in urban soils. Science of the Total Environment, 430, 184–192.

    Article  CAS  Google Scholar 

  • Calesso Teixeira, E., Agudelo-castañeda, D., & Porta Mattiuzi, C. (2015). Contribution of polycyclic aromatic hydrocarbon (PAH) sources to the urban environment: A comparison of receptor models. Science of the Total Environment, 538, 212–219.

    Article  CAS  Google Scholar 

  • Cavalcante, R., Sousa, F., Nascimento, R., Silveira, E., & Viana, R. (2012). Influence of urban activities on polycyclic aromatic hydrocarbons in precipitation: Distribution, sources and depositional flux in a developing metropolis, Fortaleza, Brazil. Science of the Total Environment, 414, 287–292.

    Article  CAS  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment). (2007). Canadian soil quality guidelines for the protection of environmental and human health. Update 7.

  • Cetin, B., Ozturk, F., Keles, M., & Yurdakul, S. (2017). PAHs and PCBs in an Eastern Mediterranean megacity, Istanbul: Their spatial and temporal distributions, air-soil exchange and toxicological. Environmental Pollution, 220, 1322–1332.

    Article  CAS  Google Scholar 

  • Colombo, J., Barreda, A., Bilos, C., Cappelletti, N., Demichelis, S., Lombardi, P., et al. (2005). Oil spill in the Río de la Plata estuary, Argentina: 1–biogeochemical assessment of waters, sediments, soils and biota. Environmental Pollution, 134, 277–289.

    Article  CAS  Google Scholar 

  • Demircioglu, E., Sofuoglu, A., & Odabasi, M. (2011). Particle-phase dry deposition and air-soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in Izmir, Turkey. Journal of Hazardous Materials, 186, 328–335.

    Article  CAS  Google Scholar 

  • Diamond, M., Melymuk, L., Csiszar, S. A., & Robson, M. (2010). Estimation of PCB stocks, emissions, and urban fate: Will our policies reduce concentrations and exposure? Environmental Science and Technology, 44, 2777–2783.

    Article  CAS  Google Scholar 

  • Diefenbacher, P., Gerecke, A., Bogdal, C., & Hungerbu, K. (2016). Spatial distribution of atmospheric PCBs in Zurich, Switzerland: Do joint sealants still matter? Environmental Science and Technology, 50, 232–239.

    Article  CAS  Google Scholar 

  • Ferreira-Baptista, L., & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment, 25, 4501–4512.

    Article  CAS  Google Scholar 

  • Franz, T., Eisenreich, S., & Holsen, T. (1998). Dry deposition of particulate polychlorinated biphenyls and polycyclic aromatic hydrocarbons to Lake Michigan. Environmental Science and Technology, 32, 3681–3688.

    Article  CAS  Google Scholar 

  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis: part 1. Physical and mineralogical methods. 9. Soil Science Society of America (Vol. 2, pp. 383–411). Madison: Agronomy.

    Google Scholar 

  • Glüge, J., Bogdal, C., Scheringer, M., & Hungerbühler, K. (2016). What determines PCB concentrations in soils in rural and urban areas? Insights from a multi-media fate model for Switzerland as a case study. Science of the Total Environment, 550, 1152–1162.

    Article  CAS  Google Scholar 

  • Han, B., Bai, Z., Guo, G., Wang, F., Li, F., Liu, Q., et al. (2009). Characterization of PM 10 fraction of road dust for polycyclic aromatic hydrocarbons (PAHs) from Anshan, China. Journal of Hazardous Materials, 170, 934–940.

    Article  CAS  Google Scholar 

  • Health Canada. (2007) (draft). Federal contaminated site risk assessment in Canada. Part I: Guidance on Human Health Preliminary Quantitative Risk Assessment, Version 2.0.

  • Holsen, T., Noll, K., Liu, S., & Lee, W. (1991). Dry deposition of polychlorinated biphenyls in urban areas. Environmental Science and Technology, 25, 1075–1081.

    Article  CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer). (2010). Some Non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum 92. Lyon, France: International Agency for Research on Cancer.

  • Irvine, K., & Loganathan, B. (1998). Localized enrichment of PCB levels in street dust due to redistribution by wind. Water, Air, and Soil pollution, 105, 603–615.

    Article  CAS  Google Scholar 

  • Jartun, M., Ottesen, R., Steinnes, E., & Volden, T. (2009). Painted surfaces-important sources of polychlorinated biphenyls (PCBs) contamination to the urban and marine environment. Environmental Pollution, 157, 295–302.

    Article  CAS  Google Scholar 

  • Jiang, Y., Hu, X., Yves, U., Zhan, H., & Wu, Y. (2014). Status, source and health risk assessment of polycyclic aromatic hydrocarbons in street dust of an industrial city, NW China. Ecotoxicology Environmental Safety, 106, 11–18.

    Article  CAS  Google Scholar 

  • Jones, K., Stratford, J., Waterhouse, K., Furlong, T., & Glger, W. (1989a). Increases in the polynuclear aromatic hydrocarbon content of an agricultural soil over the last century. Environmental Science and Technology, 23, 95–101.

    Article  CAS  Google Scholar 

  • Jones, K., Stratford, J., Waterhouse, K., & Vogt, N. (1989b). Organic contaminants in Welsh soils: Polynuclear aromatic hydrocarbons. Environmental Science and Technology, 23, 540–550.

    Article  CAS  Google Scholar 

  • Kang, Y., Shao, D., Li, N., Yang, G., Zhang, Q., Zeng, L., et al. (2015). Cancer risk assessment of human exposure to polycyclic aromatic hydrocarbons (PAHs) via indoor and outdoor dust based on probit model. Environmental Science and Pollution Research, 22(5), 3451–3456.

    Article  CAS  Google Scholar 

  • Klees, M., Hiester, E., Bruckmann, P., Molt, K., & Schmidt, T. (2015). Science of the total environment polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans in street dust of North Rhine-Westphalia, Germany. Science of the Total Environment, 511, 72–81.

    Article  CAS  Google Scholar 

  • Knafla, A., Phillipps, K., Brecher, R., Petrovic, S., & Richardson, M. (2006). Development of a dermal cancer slope factor for benzo [a] pyrene. Regulatory Toxicology and Pharmacology, 45, 159–168.

    Article  CAS  Google Scholar 

  • Larsen, R., & Baker, J. (2003). Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods. Environmental Science and Technology, 37, 1873–1881.

    Article  CAS  Google Scholar 

  • Law 24.051, Decree: 831/93. Hazardous waste. Annex II Table 9. Buenos Aires. Argentina. 23/4/93.

  • Meijer, S., Steinnes, E., Ockenden, W., & Jones, K. (2002). Influence of environmental variables on the spatial distribution of PCBs in Norwegian and U.K. soils: Implications for global cycling. Environmental Science and Technology, 36, 2146–2153.

    Article  CAS  Google Scholar 

  • Montelay-Massei, A., Ollivon, D., Garban, B., Teil, M., Blanchard, M., Chevreuil, M. (2004). Distribution and spatial trends of PAHs and PCBs in soils in the Seine River basin, France. Chemosphere, 55, 555–565.

    Article  CAS  Google Scholar 

  • Nadal, M., Schuhmacher, M., & Domingo, J. (2004). Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environmental Pollution, 132, 1–11.

    Article  CAS  Google Scholar 

  • Nadal, M., Schuhmacher, M., & Domingo, J. (2011). Long-term environmental monitoring of persistent organic pollutants and metals in a chemical/petrochemical area: Human health risks. Environmental Pollution, 159, 1769–1777.

    Article  CAS  Google Scholar 

  • Nakao, T., Aozasa, O., Ohta, S., & Miyata, H. (2006). Formation of toxic chemicals including dioxin-related compounds by combustion from a small home waste incinerator. Chemosphere, 62, 459–468.

    Article  CAS  Google Scholar 

  • Nam, J., Thomas, G., Jaward, F., Steinnes, E., Gustafsson, O., & Jones, K. (2008). PAHs in background soils from Western Europe: Influence of atmospheric deposition and soil organic matter. Chemosphere, 70, 1596–1602.

    Article  CAS  Google Scholar 

  • OEHHA (California Office of Environmental Health Hazard Assessment). (2017). Toxicity criteria database. https://oehha.ca.gov/chemicals.

  • Offenberg, J., & Baker, J. (1999). Aerosol size distributions of polycyclic aromatic hydrocarbons in urban and over-water atmospheres. Environmental Science and Technology, 33, 3324–3331.

    Article  CAS  Google Scholar 

  • Offenberg, J., & Baker, J. (2002). Precipitation scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons along an urban to over-water transect. Environmental Science and Technology, 36, 3763–3771.

    Article  CAS  Google Scholar 

  • Peng, C., Chen, W., Liao, X., Wang, M., Ouyang, Z., Jiao, W., et al. (2011). Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environmental Pollution, 159, 803–808.

    Article  CAS  Google Scholar 

  • Roberts, J., Wallace, L., Camann, D., Dickey, P., Gilbert, S., Lewis, R., et al. (2009). Monitoring and reducing exposure of infants to pollutants in house dust. Reviews of Environmental Contamination and Toxicology, 201, 1–38.

    CAS  Google Scholar 

  • Robson, M., Melymuk, L., Csiszar, S., Giang, A., Diamond, M., & Helm, P. (2010). Continuing sources of PCBs: The significance of building sealants. Environmental International, 36, 506–513.

    Article  CAS  Google Scholar 

  • Soltani, N., Keshavarzi, B., Moore, F., Tavakol, T., Reza, A., Jaafarzadeh, N., et al. (2015). Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Science of the Total Environment, 505, 712–723.

    Article  CAS  Google Scholar 

  • Stogiannidis, E., & Laane, R. (2015). Source characterization of polycyclic aromatic hydrocarbons by using their molecular indices: An overview of possibilities. Reviews of Environmental Contamination and Toxicology, 234, 49–133.

    Article  CAS  Google Scholar 

  • Tang, R., Ma, K., Zhang, Y., & Mao, Q. (2013). The spatial characteristics and pollution levels of metals in urban street dust of Beijing, China. Applied Geochemistry, 35, 88–98.

    Article  CAS  Google Scholar 

  • Tasdemir, Y., Odabasi, M., Vardar, N., Sofuoglu, A., Murphy, J., & Holsen, T. M. (2004). Dry deposition fluxes and velocities of polychlorinated biphenyls (PCBs) associated with particles. Atmospheric Environment, 38, 2447–2456.

    Article  CAS  Google Scholar 

  • Teil, M., Blanchard, M., & Chevreuil, M. (2004). Atmospheric deposition of organochlorines (PCBs and pesticides) in Northern France. Chemosphere, 55, 501–514.

    Article  CAS  Google Scholar 

  • Tobiszewski, M., & Namiesnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119.

    Article  CAS  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency). (1991a). Risk assessment guidance fo superfund. Volume I: Human health evaluation manual. Supplemental guidance, Standard default exposure factors. Interim final. OSWER directive: 9285.6-03. Office of Emergency and Remedial Response Toxics Integration Branch.

  • USEPA (U.S. Environmental Protection Agency). (1991b). Risk assessment guidance fo superfund Volume I: Human health evaluation manual (part B, development of risk-based preliminary remediation goals) Interim. EPA/540/R-92/003. Office of Emergency and Remedial Response.

  • USEPA (U.S. Environmental Protection Agency). (1993). Provisional guidance for quantitative risk assessment of Polycyclic Aromatic Hydrocarbons EPA/600/R-93/089. Environmental criteria and assessment office.

  • USEPA (U.S. Environmental Protection Agency). (1996). Soil screening guidance: user’s guide. Second edition. Publication 9355.4-23. Office of Emergency and remedial Response.

  • USEPA (U.S. Environmental Protection Agency). (2002). Calculating upper confidence limits for exposure point concentrations at hazardous waste sites. OSWER 9285.6-10. Office of Research and Development.

  • USEPA (U.S. Environmental Protection Agency). (2004). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. OSWER 9285.7-02EP. Office of Superfund Remediation and Technology Innovation.

  • USEPA (U.S. Environmental Protection Agency). (2011). Exposure factors handbook: 2011 edition. EPA/600/R-09/052F. National Center for Environmental Assessment. Office of Research and Development.

  • USEPA (U.S. Environmental Protection Agency). (2017). Integrated risk information system. www.epa.gov/iris.

  • Vane, C., Kim, A., Beriro, D., Cave, M., Knights, K., Moss-hayes, V., et al. (2014). Polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB) in urban soils of Greater London, UK. Applied Geochemistry, 51, 303–314.

    Article  CAS  Google Scholar 

  • Wang, W., Huang, M., Kang, Y., Wang, H., Leung, A., Cheung, K., et al. (2011a). Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment. Science of the Total Environment, 409, 4519–4527.

    Article  CAS  Google Scholar 

  • Wang, X., Miao, Y., Zhang, Y., Li, Y., Wu, M., & Yu, G. (2013). Environment Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: Occurrence, source apportionment and potential human health risk. Science of the Total Environment, 447, 80–89.

    Article  CAS  Google Scholar 

  • Wang, W., Simonich, M., Giri, B., Xue, M., Zhao, J., Chen, S., et al. (2011b). Spatial distribution and seasonal variation of atmospheric bulk deposition of polycyclic aromatic hydrocarbons in Beijing-Tiajin region, North China. Environmental Pollution, 159, 287–293.

    Article  CAS  Google Scholar 

  • Wu, S., Tao, S., Xu, F., Dawson, R., Lan, T., Li, B., et al. (2005). Polycyclic aromatic hydrocarbons in dust fall in Tianjin, China. Science of the Total Environment, 345, 115–126.

    Article  CAS  Google Scholar 

  • Xu, L., & Shu, X. (2014). Aggregate human health risk assessment from dust of daily life in the urban environment of Beijing. Risk Analysis, 34(4), 670–682.

    Article  CAS  Google Scholar 

  • Yu, B.-W., Jin, G.-Z., Moon, Y.-H., Kim, M.-K., Kyoung, J.-D., & Chang, Y.-S. (2006). Emission of PCDD/Fs and dioxin-like PCBs from metallurgy industries in S. Korea. Chemosphere, 62, 494–501.

    Article  CAS  Google Scholar 

  • Yunker, M., Macdonald, R., Vingarzan, R., Mitchell, H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is a part of the Project UNDAVCYT2013 funded by National University of Avellaneda, Argentina. The authors wish to thank Dr. Lucas Garbin for the English revisions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Cappelletti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cappelletti, N., Astoviza, M., Morrone, M. et al. Urban geochemistry and potential human health risks in the Metropolitan Area of Buenos Aires: PAHs and PCBs in soil, street dust, and bulk deposition. Environ Geochem Health 41, 699–713 (2019). https://doi.org/10.1007/s10653-018-0163-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0163-3

Keywords

Navigation