Skip to main content
Log in

Combined ultrasound with Fenton treatment for the degradation of carcinogenic polycyclic aromatic hydrocarbons in textile dying sludge

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

To develop an effective method to remove the toxic and carcinogenic polycyclic aromatic hydrocarbons (CPAHs) from textile dyeing sludge, five CPAHs were selected to investigate the degradation efficiencies using ultrasound combined with Fenton process (US/Fenton). The results showed that the synergistic effect of the US/Fenton process on the degradation of CPAHs in textile dyeing sludge was significant with the synergy degree of 30.4. During the US/Fenton process, low ultrasonic density showed significant advantage in degrading the CPAHs in textile dyeing sludge. Key reaction parameters on CPAHs degradation were optimized by the central composite design as followed: H2O2 concentration of 152 mmol/L, ultrasonic density of 408 W/L, pH value of 3.7, the molar ratio of H2O2 to Fe2+ of 1.3 and reaction time of 43 min. Under the optimal conditions of the US/Fenton process, the degradation efficiencies of five CPAHs were obtained as 81.23% (benzo[a]pyrene) to 84.98% (benz[a]anthracene), and the benzo[a]pyrene equivalent (BaPeq) concentrations of five CPAHs declined by 81.22–85.19%, which indicated the high potency of US/Fenton process for removing toxic CPAHs from textile dyeing sludge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An, T., An, J., Yang, H., Li, G., Feng, H., & Nie, X. (2011). Photocatalytic degradation kinetics and mechanism of antivirus drug-lamivudine in TiO2 dispersion. Journal of Hazardous Materials, 197, 229–236. doi:10.1016/j.jhazmat.2011.09.077.

    Article  CAS  Google Scholar 

  • Bagal, M. V., & Gogate, P. R. (2014). Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: A review. Ultrasonics Sonochemistry, 21(1), 1–14. doi:10.1016/j.ultsonch.2013.07.009.

    Article  CAS  Google Scholar 

  • Berberidou, C., Poulios, I., Xekoukoulotakis, N. P., & Mantzavinos, D. (2007). Sonolytic, photocatalytic and sonophotocatalytic degradation of malachite green in aqueous solutions. Applied Catalysis, B: Environmental, 74(1–2), 63–72. doi:10.1016/j.apcatb.2007.01.013.

    Article  CAS  Google Scholar 

  • Bocos, E., Fernández-Costas, C., Pazos, M., & Sanromán, M. Á. (2015). Removal of PAHs and pesticides from polluted soils by enhanced electrokinetic-Fenton treatment. Chemosphere, 125, 168–174. doi:10.1016/j.chemosphere.2014.12.049.

    Article  CAS  Google Scholar 

  • Carail, M., Fabiano-Tixier, A.-S., Meullemiestre, A., Chemat, F., & Caris-Veyrat, C. (2015). Effects of high power ultrasound on all-E-β-carotene, newly formed compounds analysis by ultra-high-performance liquid chromatography–tandem mass spectrometry. Ultrasonics Sonochemistry, 26, 200–209. doi:10.1016/j.ultsonch.2015.04.003.

    Article  CAS  Google Scholar 

  • Chen, W.-S., & Su, Y.-C. (2012). Removal of dinitrotoluenes in wastewater by sono-activated persulfate. Ultrasonics Sonochemistry, 19(4), 921–927. doi:10.1016/j.ultsonch.2011.12.012.

    Article  CAS  Google Scholar 

  • David, B. (2009). Sonochemical degradation of PAH in aqueous solution. Part I: Monocomponent PAH solution. Ultrasonics Sonochemistry, 16(2), 260–265. doi:10.1016/j.ultsonch.2008.07.013.

    Article  CAS  Google Scholar 

  • Feng, L., Luo, J., & Chen, Y. (2015). Dilemma of sewage sludge treatment and disposal in China. Environmental Science and Technology, 49(8), 4781–4782. doi:10.1021/acs.est.5b01455.

    Article  CAS  Google Scholar 

  • Flotron, V., Delteil, C., Padellec, Y., & Camel, V. (2005). Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process. Chemosphere, 59(10), 1427–1437. doi:10.1016/j.chemosphere.2004.12.065.

    Article  CAS  Google Scholar 

  • Gogate, P. R., & Pandit, A. B. (2004). A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions. Advances in Environmental Research, 8(3–4), 501–551. doi:10.1016/s1093-0191(03)00032-7.

    Article  CAS  Google Scholar 

  • Golash, N., & Gogate, P. R. (2012). Degradation of dichlorvos containing wastewaters using sonochemical reactors. Ultrasonics Sonochemistry, 19(5), 1051–1060. doi:10.1016/j.ultsonch.2012.02.011.

    Article  CAS  Google Scholar 

  • Gong, C., Jiang, J., & Li, D. (2015). Ultrasound coupled with Fenton oxidation pre-treatment of sludge to release organic carbon, nitrogen and phosphorus. Science of the Total Environment, 532, 495–500. doi:10.1016/j.scitotenv.2015.05.131.

    Article  CAS  Google Scholar 

  • Hammi, K. M., Jdey, A., Abdelly, C., Majdoub, H., & Ksouri, R. (2015). Optimization of ultrasound-assisted extraction of antioxidant compounds from Tunisian Zizyphus lotus fruits using response surface methodology. Food Chemistry, 184, 80–89. doi:10.1016/j.foodchem.2015.03.047.

    Article  CAS  Google Scholar 

  • Hou, L., Wang, L., Royer, S., & Zhang, H. (2016). Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. Journal of Hazardous Materials, 302, 458–467. doi:10.1016/j.jhazmat.2015.09.033.

    Article  CAS  Google Scholar 

  • Kanthale, P., Ashokkumar, M., & Grieser, F. (2008). Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: Frequency and power effects. Ultrasonics Sonochemistry, 15(2), 143–150. doi:10.1016/j.ultsonch.2007.03.003.

    Article  CAS  Google Scholar 

  • Kobayashi, D., Sano, K., Takeuchi, Y., & Terasaka, K. (2011). Effect of irradiation distance on degradation of phenol using indirect ultrasonic irradiation method. Ultrasonics Sonochemistry, 18(5), 1205–1210. doi:10.1016/j.ultsonch.2011.01.010.

    Article  CAS  Google Scholar 

  • Lai, B., Chen, Z., Zhou, Y., Yang, P., Wang, J., & Chen, Z. (2013). Removal of high concentration p-nitrophenol in aqueous solution by zero valent iron with ultrasonic irradiation (US–ZVI). Journal of Hazardous Materials, 250–251, 220–228. doi:10.1016/j.jhazmat.2013.02.002.

    Article  CAS  Google Scholar 

  • Lan, R.-J., Li, J.-T., Sun, H.-W., & Su, W.-B. (2012). Degradation of naproxen by combination of Fenton reagent and ultrasound irradiation: Optimization using response surface methodology. Water Science and Technology, 66(12), 2695. doi:10.2166/wst.2012.508.

    Article  CAS  Google Scholar 

  • Li, J.-T., & Song, Y.-L. (2009). Degradation of AR 97 aqueous solution by combination of ultrasound and Fenton reagent. Environmental Progress and Sustainable Energy. doi:10.1002/ep.10375.

    Article  Google Scholar 

  • Lin, M., Ning, X.-A., An, T., Zhang, J., Chen, C., Ke, Y., et al. (2016). Degradation of polycyclic aromatic hydrocarbons (PAHs) in textile dyeing sludge with ultrasound and Fenton processes: Effect of system parameters and synergistic effect study. Journal of Hazardous Materials, 307, 7–16. doi:10.1016/j.jhazmat.2015.12.047.

    Article  CAS  Google Scholar 

  • Lundstedt, S., Persson, Y., & Oberg, L. (2006). Transformation of PAHs during ethanol-Fenton treatment of an aged gasworks’ soil. Chemosphere, 65(8), 1288–1294. doi:10.1016/j.chemosphere.2006.04.031.

    Article  CAS  Google Scholar 

  • Neyens, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous Materials, 98(1–3), 33–50. doi:10.1016/s0304-3894(02)00282-0.

    Article  CAS  Google Scholar 

  • Ning, X.-A., Chen, H., Wu, J., Wang, Y., Liu, J., & Lin, M. (2014a). Effects of ultrasound assisted Fenton treatment on textile dyeing sludge structure and dewaterability. Chemical Engineering Journal, 242, 102–108. doi:10.1016/j.cej.2013.12.064.

    Article  CAS  Google Scholar 

  • Ning, X.-A., Liang, J.-Y., Li, R.-J., Hong, Z., Wang, Y.-J., Chang, K.-L., et al. (2015). Aromatic amine contents, component distributions and risk assessment in sludge from 10 textile-dyeing plants. Chemosphere, 134, 367–373. doi:10.1016/j.chemosphere.2015.05.015.

    Article  CAS  Google Scholar 

  • Ning, X.-A., Lin, M.-Q., Shen, L.-Z., Zhang, J.-H., Wang, J.-Y., Wang, Y.-J., et al. (2014b). Levels, composition profiles and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sludge from ten textile dyeing plants. Environmental Research, 132, 112–118. doi:10.1016/j.envres.2014.03.041.

    Article  CAS  Google Scholar 

  • Nisbet, I. C. T., & LaGoy, P. K. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16(3), 290–300. doi:10.1016/0273-2300(92)90009-X.

    Article  CAS  Google Scholar 

  • Oturan, M. A., Sirés, I., Oturan, N., Pérocheau, S., Laborde, J.-L., & Trévin, S. (2008). Sonoelectro-Fenton process: A novel hybrid technique for the destruction of organic pollutants in water. Journal of Electroanalytical Chemistry, 624(1–2), 329–332. doi:10.1016/j.jelechem.2008.08.005.

    Article  CAS  Google Scholar 

  • Özdemir, C., Öden, M. K., Şahinkaya, S., & Kalipçi, E. (2011). Color removal from synthetic textile wastewater by sono-Fenton process. CLEAN—Soil, Air, Water, 39(1), 60–67. doi:10.1002/clen.201000263.

    Article  CAS  Google Scholar 

  • Pera-Titus, M., García-Molina, V., Baños MA, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: A general review. Applied Catalysis, B: Environmental, 47(4), 219–256. doi:10.1016/j.apcatb.2003.09.010.

    Article  CAS  Google Scholar 

  • Psillakis, E., Goula, G., Kalogerakis, N., & Mantzavinos, D. (2004). Degradation of polycyclic aromatic hydrocarbons in aqueous solutions by ultrasonic irradiation. Journal of Hazardous Materials, 108(1–2), 95–102. doi:10.1016/j.jhazmat.2004.01.004.

    Article  CAS  Google Scholar 

  • Usman, M., Faure, P., Ruby, C., & Hanna, K. (2012). Remediation of PAH-contaminated soils by magnetite catalyzed Fenton-like oxidation. Applied Catalysis, B: Environmental, 117–118, 10–17. doi:10.1016/j.apcatb.2012.01.007.

    Article  CAS  Google Scholar 

  • Virkutyte, J., Vičkačkaite, V., & Padarauskas, A. (2009). Sono-oxidation of soils: Degradation of naphthalene by sono-Fenton-like process. Journal of Soils and Sediments, 10(3), 526–536. doi:10.1007/s11368-009-0153-2.

    Article  CAS  Google Scholar 

  • Wang, C., & Liu, C. (2014). Decontamination of alachlor herbicide wastewater by a continuous dosing mode ultrasound/Fe2+/H2O2 process. Journal of Environmental Sciences, 26(6), 1332–1339. doi:10.1016/s1001-0742(13)60608-7.

    Article  CAS  Google Scholar 

  • Wang, X., Wei, Y., Wang, J., Guo, W., & Wang, C. (2012). The kinetics and mechanism of ultrasonic degradation of p-nitrophenol in aqueous solution with CCl4 enhancement. Ultrasonics Sonochemistry, 19(1), 32–37. doi:10.1016/j.ultsonch.2010.12.005.

    Article  CAS  Google Scholar 

  • Watts, R. J., Stanton, P. C., Howsawkeng, J., & Teel, A. L. (2002). Mineralization of a sorbed polycyclic aromatic hydrocarbon in two soils using catalyzed hydrogen peroxide. Water Research, 36(17), 4283–4292. doi:10.1016/S0043-1354(02)00142-2.

    Article  CAS  Google Scholar 

  • Weng, C.-H., Lin, Y.-T., & Yuan, H.-M. (2013). Rapid decoloration of Reactive Black 5 by an advanced Fenton process in conjunction with ultrasound. Separation and Purification Technology, 117, 75–82. doi:10.1016/j.seppur.2013.03.047.

    Article  CAS  Google Scholar 

  • Yang, G.-P., Zhao, X.-K., Sun, X.-J., & Lu, X.-L. (2005). Oxidative degradation of diethyl phthalate by photochemically-enhanced Fenton reaction. Journal of Hazardous Materials, 126(1–3), 112–118. doi:10.1016/j.jhazmat.2005.06.014.

    Article  CAS  Google Scholar 

  • Yap, C. L., Gan, S., & Ng, H. K. (2011). Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere, 83(11), 1414–1430. doi:10.1016/j.chemosphere.2011.01.026.

    Article  CAS  Google Scholar 

  • Zhang, J., Li, J., Thring, R., & Liu, L. (2013). Application of ultrasound and Fenton’s reaction process for the treatment of oily sludge. Procedia Environmental Sciences, 18, 686–693. doi:10.1016/j.proenv.2013.04.093.

    Article  CAS  Google Scholar 

  • Zhong, X., Xiang, L., Royer, S., Valange, S., Barrault, J., & Zhang, H. (2011). Degradation of C.I. Acid Orange 7 by heterogeneous Fenton oxidation in combination with ultrasonic irradiation. Journal of Chemical Technology and Biotechnology, 86(7), 970–977. doi:10.1002/jctb.2608.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of China (No. 21577027); Science and Technology Project of Guangdong Province, China (No. 2015A020215032); Special Applied Technology Research and Development Key Project of Guangdong Province (No. 2015B020235013); and the Science and Technology Project of Guangzhou city (No. 201607010330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun-An Ning.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2460 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JH., Zou, HY., Ning, XA. et al. Combined ultrasound with Fenton treatment for the degradation of carcinogenic polycyclic aromatic hydrocarbons in textile dying sludge. Environ Geochem Health 40, 1867–1876 (2018). https://doi.org/10.1007/s10653-017-9946-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-9946-1

Keywords

Navigation