Skip to main content

Advertisement

Log in

Ecotoxicological risks of the abandoned F–Ba–Pb–Zn mining area of Osor (Spain)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Due to its potential toxic properties, metal mobilization is of major concern in areas surrounding Pb–Zn mines. In the present study, metal contents and toxicity of soils, aqueous extracts from soils and mine drainage waters from an abandoned F–Ba–Pb–Zn mining area in Osor (Girona, NE Spain) were evaluated through chemical extractions and ecotoxicity bioassays. Toxicity assessment in the terrestrial compartment included lethal and sublethal endpoints on earthworms Eisenia fetida, arthropods Folsomia candida and several plant species, whereas aquatic tests involved bacteria Vibrio fischeri, microalgae Raphidocelis subcapitata and crustaceans Daphnia magna. Total concentrations of Ba (250–5110 mg kg−1), Pb (940 to >5000 mg kg−1) and Zn (2370–11,300 mg kg−1) in soils exceeded intervention values to protect human health. Risks for the aquatic compartment were identified in the release of drainage waters and in the potential leaching and runoff of metals from contaminated soils, with Cd (1.98–9.15 µg L−1), Pb (2.11–326 µg L−1) and Zn (280–2900 µg L−1) concentrations in filtered water samples surpassing US EPA Water Quality Criteria (2016a, b). Terrestrial ecotoxicity tests were in accordance with metal quantifications and identified the most polluted soil as the most toxic. Avoidance and reproduction tests with earthworms showed the highest sensitivity to metal contamination. Aquatic bioassays performed in aqueous extracts from soils confirmed the results from terrestrial tests and also detected toxic effects caused by the mine drainage waters. Algal growth inhibition was the most sensitive aquatic endpoint. In view of the results, the application of a containment or remediative procedure in the area is encouraged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Navarro et al. (2015)

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: Biogeochemistry, bioavailability and risks of metals (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  • Alvarenga, P., Palma, P., de Varennes, A., & Cunha-Queda, A. C. (2012). A contribution towards the risk assessment of soils from Sao Dominos Mine (Portugal): Chemical, microbial and ecotoxicological indicators. Environmental Pollution, 161, 50–56.

    Article  CAS  Google Scholar 

  • Alvarenga, P., Palma, P., Gonçalves, A. P., Fernandes, R. M., de Varennes, A., Vallini, G., et al. (2008). Evaluation of tests to assess the quality of mine-contaminated soils. Environmental Geochemistry and Health, 30, 95–99.

    Article  CAS  Google Scholar 

  • ASTM. (1988). Standard guide for conducting acute toxicity tests with fishes, macroinvertebrates, and amphibians. E729-88a. Philadelphia, PA: American Society for Testing and Materials.

    Google Scholar 

  • Barata, C., Markich, S. J., Baird, D. J., Taylor, G., & Soares, A. M. (2002). Genetic variability in sublethal tolerance to mixtures of cadmium and zinc in clones of Daphnia magna Straus. Aquatic Toxicology, 60, 85–99.

    Article  CAS  Google Scholar 

  • Bell, F. G., Bullock, S. E. T., Hälbich, T. F. J., & Lindsay, P. (2001). Environmental impacts associated with an abandoned mine in the Witbank Coalfield, South Africa. International Journal of Coal Geology, 45, 195–216.

    Article  CAS  Google Scholar 

  • Bes, C. M., Pardo, T., Bernal, M. P., & Clemente, R. (2014). Assessment of the environmental risks associated with two mine tailing soils from the La Unión-Cartagena (Spain) mining district. Journal of Geochemical Exploration, 147, 98–106.

    Article  CAS  Google Scholar 

  • Biesinger, K. E., Christensen, G. M., & Fiandt, J. T. (1986). Effects of metal salt mixtures on Daphnia magna reproduction. Ecotoxicology and Environmental Safety, 11, 9–14.

    Article  CAS  Google Scholar 

  • Bori, J., Ribalta, C., Domene, X., Riva, M. C., & Ribó, J. M. (2015). Environmental effects of an imidacloprid-containing formulation: From soils to waters. Afinidad, 571(72), 169–176.

    Google Scholar 

  • Bori, J., & Riva, M. C. (2015). An alternative approach to assess the habitat selection of Folsomia candida in contaminated soils. Bulletin of Environment Contamination and Toxicology, 95(5), 670–674.

    Article  CAS  Google Scholar 

  • Bori, J., Vallès, B., Navarro, A., & Riva, M. C. (2016). Geochemistry and environmental threats of soils surrounding an abandoned mercury mine. Environmental Science and Pollution Research. doi:10.1007/s11356-016-6463-1.

    Google Scholar 

  • British Standard EN 12457-2. (2002). Characterization of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction). London: British Standards Institutions.

    Google Scholar 

  • Davies, N. A., Hodson, M. E., & Black, S. (2003). Is the OECD acute worm toxicity test environmentally relevant? The effect of mineral form on calculated lead toxicity. Environmental Pollution, 121, 49–54.

    Article  CAS  Google Scholar 

  • De Paiva Magalhães, D., da Costa Marques, M. R., Fernandes Baptista, D., & Forsin Buss, D. (2014). Selecting a sensitive battery of bioassays to detect toxic effects of metals in efluents. Ecotoxicology and Environmental Safety, 110, 73–81.

    Article  Google Scholar 

  • De Schamphelaere, K. A. C., Nys, C., & Janssen, C. R. (2014). Toxicity of lead (Pb) to freshwater green algae: Development and validation of a bioavailability model and inter-species sensitivity comparison. Aquatic Toxicology, 155, 348–359.

    Article  Google Scholar 

  • Dudka, S., & Adriano, D. C. (1997). Environmental impacts of metal ore mining and processing: A review. Journal of Environmental Quality, 26, 590–602.

    Article  CAS  Google Scholar 

  • Ebbs, S. D., & Kochian, L. V. (1997). Toxicity of zinc and copper to Brassica species: Implications for phytoremediation. Journal of Environmental Quality, 26, 776–781.

    Article  CAS  Google Scholar 

  • European Commission. (1998). Council directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Official Journal of the European Communities, 330, 32–54.

    Google Scholar 

  • Fagašová, A. (1994). Toxicity of metals on Daphnia magna and Tubifex tubifex. Ecotoxicology and Environmental Safety, 27, 210–213.

    Article  Google Scholar 

  • Gruiz, K. (2005). Biological tools for the soil ecotoxicity evaluation: Soil testing triad and the interactive ecotoxicity tests for contaminated soil: 45–70. In F. Fava & P. Canepa (Eds.), Innovative approaches to the bioremediation of contaminated sites. Soil remediation 6. Venice: INCA.

    Google Scholar 

  • Heikkinen, P. M., Räisänen, M. L., & Johnson, R. H. (2009). Geochemical characterization of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage. Mine Water and the Environment, 28, 30–49.

    Article  CAS  Google Scholar 

  • Henriques, F. S., & Fernandes, J. C. (1991). Metal uptake and distribution in rush (Juncus conglomeratus L.) plants growing in pyrites mine tailings at Lousal, Portugal. Science of the Total Environment, 102, 253–260.

    Article  CAS  Google Scholar 

  • Hentati, O., Lachhab, R., Ayadi, M., & Ksibi, M. (2013). Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrate and plant bioassays. Environmental Monitoring and Assessment, 185, 2989–2998.

    Article  CAS  Google Scholar 

  • Hund-Rinke, K., Koerdel, W., Hennecke, D., Achazi, R., Warnecke, D., Wilke, B. M., et al. (2002). Bioassays for the ecotoxicological and genotoxicological assessment of contaminated soils (results of a round-robin test): Part II—Assessment of the habitat function of soils-tests with soil microflora and fauna. Journal of Soils and Sediments, 2(2), 83–90.

    Article  CAS  Google Scholar 

  • Hund-Rinke, K., & Wiechering, H. (2001). Earthworm avoidance test for soil assessments. Journal of Soils and Sediments, 1, 15–20.

    Article  CAS  Google Scholar 

  • ISO 11348. (2007). Water quality—Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test)—Part 3: method using freeze-dried bacteria. Geneva: International Organization for Standardization.

    Google Scholar 

  • ISO 17512. (2008). Soil quality—Avoidance test for determining the quality of soils and effects of chemicals on behavior—Part 1: Test with earthworms (Eisenia fetida and Eisenia andrei). Geneva: International Organization for Standardization.

    Google Scholar 

  • ISO 17512. (2011). Soil quality—Avoidance test for determining the quality of soils and effects of chemicals on behaviour—Part 2: Test with collembolans (Folsomia candida). Geneva: International Organization for Standardization.

    Google Scholar 

  • Jang, M., & Kwon, H. (2011). Pilot-scale tests to optimize the treatment of net-alkaline mine drainage. Environmental Geochemistry and Health, 33, 91–101.

    Article  CAS  Google Scholar 

  • Johnson, M. S., Cooke, J. A., & Stevenson, J. K. W. (1994). Revegetation of metalliferous wastes and land after metal mining. In R. E. Hester & R. M. Harrison (Eds.), Mining and its environmental impact. London: Royal Society of Chemistry.

    Google Scholar 

  • Jung, M. C., Thornton, I., & Chon, H. T. (2002). Arsenic, Sb and Bi contamination of soils, plants, waters and sediments in the vicinity of the Dalsung Cu–W mine in Korea. Science of the Total Environment, 295, 81–89.

    Article  CAS  Google Scholar 

  • Kasemets, K., Reiman, R., Põllumaa, L., Ivask, A., Francois, M., Dubourguier, H.-C., et al. (2003). Application of different toxicity tests for the detection of water-extractable toxicity of heavy metal polluted soils. Abstracts of the 11th International Symposium on Toxicity Assessment, Vilnius, Lithuania, 1–6 June, 59 pp.

  • Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152(3), 686–692.

    Article  CAS  Google Scholar 

  • Kuperman, R. G., Checkai, R. T., Simini, M., Phillips, C. T., Speicher, J. A., & Barclift, D. J. (2006). Toxicity benchmarks for antimony, barium and beryllium determined using reproduction endpoints for Folsomia candida, Eisenia fetida, and Enchytraeus crypticus. Environmental Toxicology and Chemistry, 25(3), 754–762.

    Article  CAS  Google Scholar 

  • Liu, W. X., Coveney, R. M., & Chen, J. L. (2003). Environmental quality assessment on a river system polluted by mining activities. Applied Geochemistry, 18, 749–764.

    Article  CAS  Google Scholar 

  • Lock, K., & Jansssen, C. R. (2003). Influence of aging on metal availability in soils. Reviews of Environmental Contamination and Toxicology, 178, 1–21.

    CAS  Google Scholar 

  • Lopez-Roldan, R., Kazlauskaite, L., Ribo, J. M., Riva, M. C., Gonzalez, S., & Cortina, J. L. (2012). Evaluation of an automated luminescent bacteria assay for in situ aquatic toxicity determination. Science of the Total Environment, 440, 307–313.

    Article  CAS  Google Scholar 

  • Loureiro, S., Ferreira, A. L. G., Soares, A. M. V. M., & Nogueira, A. J. A. (2005). Evaluation of the toxicity of two soils from Jales Mine (Portugal) using aquatic bioassays. Chemosphere, 61, 168–177.

    Article  CAS  Google Scholar 

  • Maisto, G., Manzo, S., DeNicola, F., Carotenuto, R., Rocco, A., & Alfani, A. (2011). Assessment of the effects of Cr, Cu, Ni and Pb soil contamination by ecotoxicological tests. Journal of Environmental Monitoring, 13, 3049–3056.

    Article  CAS  Google Scholar 

  • Misra, V., Jaffery, F. N., & Viswanathan, P. N. (1994). Risk assessment of water pollutants. Environmental Monitoring and Assessment, 29, 29–40.

    Article  CAS  Google Scholar 

  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8, 199–216.

    Article  CAS  Google Scholar 

  • Natal da Luz, T., Moreira-Santos, M., Ruepert, C., Castillo, L. E., Ribeiro, R., & Sousa, J. P. (2012). Ecotoxicological characterization of a tropical soil after diazinon spraying. Ecotoxicology, 21(8), 2163–2176.

    Article  CAS  Google Scholar 

  • Navarro, A., Cardellach, E., & Corbella, M. (2011). Immobilization of Cu, Pb and Zn in mine-contaminated soils using reactive materials. Journal of Hazardous Materials, 186, 1576–1585.

    Article  CAS  Google Scholar 

  • Navarro Flores, A., & Martínez Sola, F. (2010). Evaluation of metal attenuation from mine tailings in SE Spain (Sierra Almagrera): A soil-leaching column study. Mine Water and the Environment, 29, 53–67.

    Article  CAS  Google Scholar 

  • Navarro, A., Font, X., & Viladevall, M. (2015). Metal mobilization and zinc-rich circumneutral mine drainage from the abandoned mining area of osor (Girona, NE Spain). Mine Water and the Environment, 34, 329–342.

    Article  CAS  Google Scholar 

  • OECD 201. (2011). Algae, growth inhibition test. Guideline for testing of chemicals. Paris: Organization for Economic Cooperation and Development.

    Google Scholar 

  • OECD 202. (2004). Daphnia sp., Acute immobilization test guideline for testing of chemicals. Paris: Organization for Economic Cooperation and Development.

    Google Scholar 

  • OECD 207. (1984). Earthworm, acute toxicity test. Guideline for testing of chemicals. Paris: Organization for Economic Cooperation and Development.

    Google Scholar 

  • OECD 208. (2006). Terrestrial plant test: Seedling emergence and seedling growth test. Guideline for testing of chemicals. Paris: Organization for Economic Cooperation and Development.

    Google Scholar 

  • OECD 222. (2004). Earthworm, reproduction test (Eisenia fetida/Eisenia andrei). Guideline for testing of chemicals. Paris: Organization for Economic Cooperation and Development.

    Book  Google Scholar 

  • Pereira, C. M. S., Novais, S. C., Soares, A. M. V. M., & Amorim, M. J. B. (2013). Dimethoate affects cholinesterases in Folsomia candida and their locomotion—False negative results of an avoidance behaviour test. Science of the Total Environment, 443, 821–827.

    Article  CAS  Google Scholar 

  • Plante, B., Benzaazoua, M., & Bussière, B. (2011). Predicting geochemical behaviour of waste rock with low acid generating potential using laboratory kinetic tests. Mine Water and the Environment, 30, 2–21.

    Article  CAS  Google Scholar 

  • Ramírez, W. A., Domene, X., Ortiz, O., & Alcañiz, J. M. (2008). Toxic effects of digested, composted and thermally-dried sewage sludge on three plants. Bioresource technology, 99, 7168–7175.

    Article  Google Scholar 

  • Riva, M. C., Cegarra, J., & Crespi, M. (1993). Effluent ecotoxicology in the wool-scouring process. Science of the Total Environment, 134(2), 1143–1150.

    Article  Google Scholar 

  • Riva, M. C., Ribó, J., Gibert, C., & Alañón, P. (2007). Acute toxicity of leather processing effluents on Vibrio fisheri and Brachydanio rerio. Afinidad, 528, 182–188.

    Google Scholar 

  • Riva, M. C., & Valles, B. (1994). Effect of components of the textile mothproofing process on three freshwater microalgae species. Bulletin of Environment Contamination and Toxicology, 52, 292–297.

    Article  CAS  Google Scholar 

  • Rocha, L., Rodrigues, S. M., Lopes, I., Soares, A. M. V. M., Duarte, A. C., & Pereira, E. (2011). The water-soluble fraction of potentially toxic elements in contaminated soils: Relationships between ecotoxicity, solubility and geochemical reactivity. Chemosphere, 84(10), 1495–1505.

    Article  CAS  Google Scholar 

  • Rodgher, S., Espíndola, E. L. G., Simões, F. C. F., & Tonietto, A. E. (2012). Cadmium and chromium toxicity to pseudokirchneriella subcapitata and microcystis aeruginosa. Brazilian Archives of Biology and Technology, 55(1), 161–169.

    Article  CAS  Google Scholar 

  • Savard, K., Berthelot, Y., Auroy, A., Spear, P. A., Trottier, B., & Robidoux, P. Y. (2007). Effects of HMX-lead mixtures on reproduction of the earthworm Eisenia Andrei. Archives of Environmental Contamination and Toxicology, 53, 351–358.

    Article  CAS  Google Scholar 

  • Scheffczyk, A., Frankenbach, S., Jänsch, S., & Römbke, J. (2014). Comparison of the effects of zinc nitrate-tetrahydrate and tributyltin-oxide on the reproduction and avoidance behavior of the earthworm Eisenia andrei in laboratory test using nine soils. Applied Soil Ecology, 83, 253–257.

    Article  Google Scholar 

  • Shaw, J. R., Dempsey, T. D., Chen, C. Y., Hamilton, J. W., & Folt, C. L. (2006). Comparative toxicity of cadmium, zinc, and mixtures of cadmium and zinc to daphnids. Environmental Toxicology and Chemistry, 25(1), 182–189.

    Article  CAS  Google Scholar 

  • Sun, B., Pan, X., & Zhou, F. (2012). Species sensitivity distribution for arsenic toxicity on plant based on soil culture data: Implications for benchmarks of soil risk assessments. In: E. Zhu & S. Sambath (Eds.), Information technology and agricultural engineering AISC 134 (pp. 871–879).

  • Teodorovic, I., Planojevic, I., Knezevic, P., Radak, S., & Nemet, I. (2009). Sensitivity of bacterial vs. acute Daphnia magna toxicity tests to metals. Central European Journal of Biology, 4(4), 482–492.

    CAS  Google Scholar 

  • US Environmental Protection Agency. (1998). Guidelines for ecological risk assessment. EPA/630/R-95/002F, Risk Assessment Forum.

  • US Environmental Protection Agency. (2016a). Water quality criteria. http://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table. Accessed January, 2016.

  • US Environmental Protection Agency. (2016b). National primary drinking water regulations. https://www.epa.gov/your-drinking-water/table-regulated-drinking-water-contaminants. Accessed April, 2016.

  • Waste Agency of Catalonia (WAC). (2015). GRL values for metals and metalloids and protection to the human health applicable to Catalonia. http://residus.gencat.cat/en/ambits_dactuacio/sols_contaminats/nivells_generics_de_referencia_ngr/valors_dels_ngr_per_metalls_i_metal_loides_i_proteccio_salut/index.html. Accessed January, 2016.

  • Wheeler, M. W., Park, R. M., & Bailer, A. J. (2006). Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environmental Toxicology and Chemistry, 25(5), 1441–1444.

    Article  CAS  Google Scholar 

  • Zar, J. H. (1998). Biostatistical analysis (5th ed., pp. 561–569). Upper Saddle River, NJ: Prentice-Hall.

    Google Scholar 

  • Zhang, M. K., Liu, Y. Z., & Wang, H. (2010). Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Communications in Soil Science and Plant, 41(7), 820–831.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors want to thank Gerard Vila for his support in the performance of some terrestrial ecotoxicity tests. This research was funded by Universitat Politècnica de Catalunya (UPC) and R&D Gestió i Serveis Ambientals S.L. (Spain) through a doctoral grant to Jaume Bori (Beca UPC Recerca 2012) and by the Spanish Ministry of Economy and Competitiveness through the project CTM2010-18167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Bori.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bori, J., Vallès, B., Navarro, A. et al. Ecotoxicological risks of the abandoned F–Ba–Pb–Zn mining area of Osor (Spain). Environ Geochem Health 39, 665–679 (2017). https://doi.org/10.1007/s10653-016-9840-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9840-2

Keywords

Navigation