Skip to main content

Advertisement

Log in

Health risk assessment through consumption of vegetables rich in heavy metals: the case study of the surrounding villages from Panasqueira mine, Central Portugal

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Panasqueira mine is a tin–tungsten mineralization hosted by metasediments with quartz veins rich in ferberite. The mineralization also comprises wolframite, cassiterite, chalcopyrite, several sulfides, carbonates and silver sulfosalts. The mining and beneficiation processes produce arsenic-rich mine wastes laid up in huge tailings (Barroca Grande and Rio tailings). The contents of As, Cd, Cr, Cu, Pb and Zn were estimated in rhizosphere soils, irrigation waters, road dusts and in potatoes, cabbages, lettuces and beans, collected on local gardens of four neighborhood Panasqueira mine villages: S. Francisco de Assis (SFA) and Barroca suffering the influence of tailings; Unhais-o-Velho and Casegas considered as non-polluted areas. The mean concentrations of metals in rhizosphere soils and vegetables exceed the reference guidelines values and seem to be linked to the sulfides. The rhizosphere ecological risks were ranked in the order of Cd > As > Cu > Pb > Zn > Cr and SFA > Barroca > Casegas > Unhais-o-Velho. Metal concentrations, in vegetables, were found in the order of lettuce > cabbage > potatoes and SFA > Barroca > Casegas > Unhais-o-Velho. For cabbages and lettuces, the tendency of contamination is roots > leaves and for potatoes is roots > leaves > tubers. The risk for residents, due to ingesting of metals/metalloid, by consuming vegetables grown around the sampling area, was calculated and the result indicates that the inhabitants of these villages are probably exposed to some potential health risks through the intake of heavy metals and metalloids via consuming their vegetables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alloway, B. J. (1993). Heavy metals in soils. New York: Wiley.

    Google Scholar 

  • Antonijević, M. M., Dimitrijević, M. D., Milić, S. M., & Nujkić, M. M. (2012). Metal concentrations in the soils and native plants surrounding the old flotation tailings pond of the copper mining and smelting complex Bor (Serbia). Journal of Environmental Monitoring, 14, 866–877.

    Article  Google Scholar 

  • Ávila, P. F., Ferreira da Silva, E., Salgueiro, A. R., & Farinha, J. A. (2008). Geochemistry and mineralogy of mill tailings impoundments from the Panasqueira mine (Portugal): implications for the surrounding environment. Journal of International Mine Water Association, 27(4), 210–224.

    Google Scholar 

  • Bech, J., Duran, P., Roca, N., Poma, W., Sánchez, I., Roca-Pérez, L., et al. (2012). Accumulation of Pb and Zn in Bidens triplinervia and Senecio sp. spontaneous species from mine spoils in Peru and their potential use in phytoremediation. Journal of Geochemical Exploration, 123, 109–113.

    Article  CAS  Google Scholar 

  • Bes, C. M., Pardo, T., Pilar Bernal, M., & Clemente, R. (2014). Assessment of the environmental risks associated with two mine tailing soils from the La Unión-Cartagena (Spain) mining district. Journal of Geochemical Exploration. doi:10.1016/j.gexplo.2014.05.020.

  • Bourliva, A., Kantiranis, N., Papadopoulou, L, Aidona, E., Christoforidis, C., & Kollias, P. (2011). On the morphology, geochemical characteristics and magnetic properties of urban road dust particles from the historic center of the city of Thessaloniki, Greece. In Proceedings of the 12th international conference on environmental science and technology, Rhodes, Greece.

  • Boussen, S., Soubrand, M., Bril, H., Ouerfelli, K., & Abdeljaouad, S. (2013). Transfer of lead, zinc and cadmium from mine tailings to wheat (Triticum aestivum) in carbonated Mediterranean (Northern Tunisia) soils. Geoderma, 192, 227–236.

    Article  CAS  Google Scholar 

  • Candeias, C. M. L. (2013). Modelling the impact of Panasqueira mine in the ecosystems and human health: A multidisciplinary approach. Ph.D. thesis, Universidade de Aveiro, Aveiro, Portugal.

  • Candeias, C., Ferreira da Silva, E., Ávila, P. F., & Teixeira, J.P. (2014b). Identifying sources and assessing potential risk of exposure to heavy metals and hazardous materials in mining areas: The case study of Panasqueira mine (Central Portugal) as an example. Geosciences. doi:10.3390/geosciences4040240.

  • Candeias, C., Melo, R., Ávila, P. F., Ferreira da Silva, E., Salgueiro, A. R., & Teixeira, J. P. (2014a). Heavy metal pollution in mine–soil–plant system in S. Francisco de Assis—Panasqueira mine (Portugal). Applied Geochemistry, 44, 12–26.

    Article  CAS  Google Scholar 

  • Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88, 1707–1719.

    Article  CAS  Google Scholar 

  • Coelho, P. (2013). Biomonitoring of environmental contamination resulting from mining activities on exposed populations. Ph.D. thesis, UP/ICBAS/INSA, Porto, Portugal.

  • Costa, P. (2004). Atlas do Potencial Eólico para Portugal Continental. Master thesis, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal (in Portuguese).

  • Costa, P., & Estanqueiro, A. (2006a). Building a wind atlas for mainland Portugal using a weather type classification. In Proceedings of the European wind energy conference (EWEC), Athens, Greece.

  • Costa, P., & Estanqueiro, A. (2006b). Development and validation of the Portuguese wind atlas. In Proceedings of the European wind energy conference (EWEC), Athens, Greece.

  • Decree-Law 306/2007. (2007). Portuguese Republic Diary, Ministry for Environment, Spatial Planning and Regional Development. Diário da Republica, 1.ª serie—N° 164—27 August (in Portuguese).

  • DHFCD. (2003). Department of Health, Foodstuffs, Cosmetics and Disinfectants Act. 1972 (Act 54 of 1972); Regulation relating to maximum levels in foodstuffs: Amendment. Pretoria: DoH.

  • Dold, B., & Fontboté, L. (2001). Element cycling and secondary mineralogyin porphyry copper tailings as a function of climate, primary mineralogy and mineral processing. Special issue: Geochemical studies of mining and the environment. Journal of Geochemical Exploration, 74(1–3), 3–55.

    Article  CAS  Google Scholar 

  • e-Ecorisk. (2007). A regional enterprise network decision-support system for environmental risk and disaster management of large-scale industrial soils. Contract No. EGV1-CT-2002-00068, WP3—case study site characterization. Deliverable 3.1—Project Management Report for the Reporting Period.

  • FAO/WHO. (2001). Joint Codex Alimentarius Commission. Food additives and contaminants. Food Standards Programme; ALINORM 01/12A:1-289.

  • Ferreira, M. M. S. I. (2004). Dados geoquímicos de base de solos de Portugal Continental, utilizando amostragem de baixa densidade. Ph.D. thesis, Universidade de Aveiro, Aveiro, Greece (in portuguese).

  • Ferreira, M. A., & Barros, A. A. (2002). Determination of As(III) and arsenic(V) in natural waters by cathodic stripping voltammetry at a hanging mercury drop electrode. Analytica Chimica Acta, 459, 151–159.

    Article  CAS  Google Scholar 

  • Ferreira da Silva, E., Ávila, P. F., Salgueiro, A. R., Candeias, C., & Pereira, H. G. (2013). Quantitative–spatial assessment of soil contamination in S. Francisco de Assis due to mining activity of the Panasqueira mine (Portugal). Environmental Science and Pollution Research, 20, 7534–7549.

    Article  CAS  Google Scholar 

  • Finkelman, R., Centeno, J., & Selenius, O. (2005). The emerging medical and geological association. Transactions of the American Clinical and Climatological Association, 116, 155–165.

    Google Scholar 

  • Galán, E., Gómez-Ariza, J. L., González, I., Fernández-Caliani, J. C., Morales, E., & Giráldez, I. (2003). Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Applied Geochemistry, 18, 409–421.

    Article  Google Scholar 

  • Guerra, F., Trevizam, A. R., Muraoka, T., Marcante, N. C., & Canniatti-Brazaca, S. G. (2012). Heavy metals in vegetables and potential risk for human health. Scientia Agricola, 69(1), 54–60.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). Ecological risk index for aquatic pollution control, a sedimentological approach. Water Research, 14, 975–1001.

    Article  Google Scholar 

  • Han, Y. M., Du, P. X., Cao, J. J., & Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. The Science of Total Environment, 355, 176–186.

    Article  CAS  Google Scholar 

  • Havlin, J. L., Beaton, J. D., Tisdale, S. L., & Nelson, W. R. (1999). Soil fertility and fertilizers: An introduction to nutrient management (6th ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • http://www.inag.pt.

  • Jarup, L., Bergluud, M., & Elinder, C. G. (1998). Scandian. Journal of Work Environmental Health, 24, 1–51.

    Article  Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. New York: Springer.

    Book  Google Scholar 

  • Kachenko, A. G., & Singh, B. (2006). Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water, Air, and Soil Pollution, 169, 101–123.

    Article  CAS  Google Scholar 

  • Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution. doi:10.1016/j.envpol.2007.06.056.

  • Kirkham, M. B. (2006). Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137, 19–32.

    Article  CAS  Google Scholar 

  • Kříbek, B., Majer, V., Pašava, J., Kamona, F., Mapani, B., Keder, J., & Ettler, V. (2014). Contamination of soils with dust fallout from the tailings dam at the Rosh Pinah area, Namibia: Regional assessment, dust dispersion modeling and environmental consequences. Journal of Geochemical Exploration, 144, 391–408.

    Article  Google Scholar 

  • Liu, Q., Diamond, M. L., Gingrich, S. E., Ondov, J. M., Maciejczyk, P., & Stern, G. A. (2003). Accumulation of metals, trace elements and semivolatile organic compounds on exterior window surfaces in Baltimore. Environmental Pollution, 122(1), 51–61.

    Article  CAS  Google Scholar 

  • Lorenz, S. E., Hamon, R. E., & McGrath, S. P. (1994). Differences between soil solutions obtained from rhizosphere and non-rhizosphere soils by water displacement and soil centrifugation. European Journal of Soil Science, 45, 431–438.

    Article  CAS  Google Scholar 

  • Mahmood, A., & Malik, R. N. (2014). Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arabian Journal of Chemistry, 7, 91–99.

    Article  CAS  Google Scholar 

  • McBride, M. B. (2003). Toxic metals in sewage sludge-amended soils: Has promotion of beneficial use discounted the risks? Advances in Environmental Research, 8, 5–19.

    Article  CAS  Google Scholar 

  • McBride, M. B. (2007). Trace metals and sulfur in soils and forage of a chronic wasting disease locus. Environmental Chemistry, 4, 134–139.

    Article  CAS  Google Scholar 

  • McCauley, A., Jones, C., & Jacobsen, J. (2009). Soil pH and organic matter. Nutrient Management Module, 8, 1–12.

    Google Scholar 

  • Mingorance, M.D., Valdes, B., & Rossini, S.O. (2007). Strategies of heavy metal uptake by plants growing under industrial emissions. Environment International. doi:10.1016/j.envint.2007.01.005.

  • Ministry of the Environment. (2011). Soil. GroundWater and sediment standards for the use under part XV.1. Ontario: Environmental Protection Action.

  • Mudgal, V., Madaan, N., Mudgal, A., Singh, R., & Mishra, S. (2010). Toxic metals on human health. The Open Nutraceuticals Journal, 3, 94–99.

    CAS  Google Scholar 

  • Naser, H. M., Mahmud, N. U., Sultana, S., Gomes, R., & Rahman, M. (2012). Trace elements content in vegetables grown in industrially polluted and non-polluted areas. Bangladesh Journal of Agricultural Research, 37(3), 515–527.

    Article  Google Scholar 

  • Pandey, V. C., Singh, N., Singh, R. P., & Singh, D. P. (2014). Rhizoremediation potential of spontaneously grown Typha latifolia on fly ash basins: Study from the field. Ecological Engineering, 71, 722–727.

    Article  Google Scholar 

  • Perrin, J. (1974). Classification des sols organiques. Bull Liaison de LCPC, 69, 36–47 (in French).

  • Prabu, P. C. (2009). Impact of heavy metal contamination of Akaki River of Ethiopia on soil and metal toxicity on cultivated vegetable crops. Electronic Journal of Environmental, Agricultural and food Chemistry, 8(9), 818–827.

    CAS  Google Scholar 

  • Raikwar, M. K., Kumar, P., Singh, M., & Singh, A. (2008). Toxic effect of heavy metals in livestock health. Veterinary World, 1(1), 28–30.

    Article  Google Scholar 

  • Rattan, R. K., Datta, S. P., Chhonkar, P. K., Suribabu, K., & Singh, A. K. (2005). Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—A case study. Agriculture, Ecosystem and Environment, 109, 310–322.

    Article  CAS  Google Scholar 

  • Reimann, C., & Garrett, R. G. (2005). Geochemical background: Concept and reality. The Science of Total Environment, 350, 12–27.

    Article  CAS  Google Scholar 

  • Reis, A. C. (1971). As Minas da Panasqueira. Boletim de Minas, 8(1), 3–34 (in Portuguese).

  • Rodríguez, L., Ruiz, E., Alonso-Azcárate, J., & Rincón, J. (2009). Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain. Journal of Environmental Management, 90, 1106–1116.

    Article  Google Scholar 

  • Sezgin, N., Ozcan, H. K., Demir, G., Nemlioglu, S., & Bayat, C. (2003). Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway. Environment International, 29, 979–985.

    Article  Google Scholar 

  • Shah, M. T., Shaheen, B., & Khan, S. (2010). Pedo and biogeochemical studies of mafic and ultramafic rocks in the Mingora and Kabal areas, Swat, Pakistan. Environmental Earth Sciences, 60, 1091–1102.

    Article  CAS  Google Scholar 

  • Shanker, A. K., Carlos, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31, 739–753.

    Article  CAS  Google Scholar 

  • Smith, M. (2006). Panasqueira the tungsten giant at 100+. Operation Focus International Mining, 2, 10–14.

    Google Scholar 

  • US EPA Environmental Protection Agency. (1997). Health effects assessment summary tables (HEAST). Washington, D.C: U.S. Environmental Protection Agency.

  • US EPA Environmental Protection Agency. (2010). IRIS-integrated risk information system. http://cfpub.epa.gov/ncea/iris/compare.cfm (January 2015).

  • Wanat, N., Joussein, E., Soubrand, M., & Lenain, J. F. (2014). Arsenic (As), antimony (Sb), and lead (Pb) availability from Au-mine technosols: A case study of transfer to natural vegetation cover in temperate climates. Environmental Geochemistry and Health. doi:10.1007/s10653-014-9596-5.

  • Wang, X., Sato, T., Xing, B., & Tao, S. (2005). Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. The Science of the Total Environment, 350, 28–37.

    Article  CAS  Google Scholar 

  • Wenzel, W. W., Unterbrunner, R., Sommer, P., & Sacco, P. (2003). Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant and Soil, 249, 83–96.

    Article  CAS  Google Scholar 

  • WHO. (1993). Evaluation of certain food additives and contaminants. In 41st report of the Joint FAO/WHO Expert Committee on Food Additives (WHO Technical Series, 837). Geneva: World Health Organization.

  • WHO. (2000). Air quality guidelines for Europe. WHO Regional Publications, European Series N° 91 (2nd ed.). Copenhagen: World Health Organization.

  • Wong, S. C., Li, X. D., Zhang, G., Qi, S. H., & Min, Y. S. (2002). Heavy metals in agricultural soils of Pearl River Delta, South China. Environmental Pollution, 119, 33–44.

    Article  CAS  Google Scholar 

  • Wu, S., Peng, S., Zhang, X., Wu, D., Luo, W., Zhang, T., et al. (2015). Levels and risk assessments of heavy metals in urban soils in Dongguan, China. Journal of Geochemical Exploration, 148, 71–78.

    Article  CAS  Google Scholar 

  • www.iarc.fr.

  • www.nrcs.usda.gov.

  • Yongming, H., Peixuan, D., Junji, C., & Posmentier, E. S. (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. The Science of Total Environment, 335, 176–186.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by the Portuguese Fundação para a Ciência e a Tecnologia (FCT)—through the Grant: SFRH/BD/63349/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula F. Ávila.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 100 kb)

Figure S1.

Sampling location of rhizosphere soils, road dusts, waters and vegetables, in the four selected villages. (JPEG 781 kb)

Figure S2.

View of Barroca Grande tailing with dust in the air due to the dumpers and wind. (JPEG 537 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ávila, P.F., Ferreira da Silva, E. & Candeias, C. Health risk assessment through consumption of vegetables rich in heavy metals: the case study of the surrounding villages from Panasqueira mine, Central Portugal. Environ Geochem Health 39, 565–589 (2017). https://doi.org/10.1007/s10653-016-9834-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9834-0

Keywords

Navigation