Skip to main content
Log in

Trace Elements in Soils and Vegetables from Market Gardens of Urban Areas in Marrakech City

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The consumption of vegetables grown on soils polluted by trace elements can cause a serious threat for animal and human health and disturb the functioning of the ecosystem. The aim of this work is to determine the concentrations of As, Cd, Co, Cr, Cu, Ni, Pb, Mn, and Zn in soils and different vegetables from market gardens of urban areas in Marrakech city in order to investigate human health risk through ingestion of contaminated vegetables. Plant transfer factor (TF), daily intake of metals (DIM), and health risk index (HRI) were calculated. The concentrations of all metals studied in the garden top soils were within the threshold values. The Cu, Zn, Co, Mn, and As concentration in the edible parts of vegetables were within the safe limits. However, Cd and Pb in Malva parviflora and Cd in Brassica rapa, and Cr and Ni in Coriandrum sativum exceeded their permissible limits. The TF for these nine metals varied between 0.01 and 1.35. The classification of TEs according to their TF is as follows: Cu > Zn > Cd > Ni > Cr > Pb > Mn > Co > As. The maximum value was recorded in Coriandrum sativum while the minimum value was recorded in Cynara cardunculus. The HRI values were within the safe limit (< one) except for Pb in Malva parviflora. This can lead to risks to the health of the human population, especially children, consuming contaminated plants. Thus, the monitoring and prevention of health risks related to the consumption of plants grown in (peri)urban areas are necessary and essential to propose recommendations to both gardeners and decision-makers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Assembly of First Nations (2016) 16/11/16 AFN at UN Climate Change Conference to Ensure First Nations Involvement in International Action on Climate Change. In: AFN News. http://www.afn.ca/2016/11/16/16-11-16-afn-at-un-climate-change-conference-to-ensure-first-nations-i/. Accessed 12 Jan 2019

  2. Draft F (2008) Urban agriculture for sustainable poverty alleviation and food security. October. https://doi.org/10.4028/www.scientific.net/AMM.94-96.1146, 94-96, 1146, 1151

  3. Leake JR, Adam-Bradford A, Rigby JE (2009) Health benefits of “grow your own” food in urban areas: implications for contaminated land risk assessment and risk management? In: Environmental health: a global access science source

  4. Van Den Berg AE, Van Winsum-Westra M, De Vries S, Van Dillen SM (2010) Allotment gardening and health: a comparative survey among allotment gardeners and their neighbors without an allotment. Environ Health 9:1257–1261. https://doi.org/10.1002/slct.201703000

    Article  CAS  Google Scholar 

  5. Ramos RAR, Pinto RSBFF (2008) Urban pollution and the impacts in urban kitchen gardens sustainability. In: Proceedings of the 2nd International Conference on Waste Management, Water Pollution, Air Pollution, Indoor Climate (WWAI’08). World Scientific and Engineering Academy and Society (WSEAS), pp 188–193

  6. Brown KH, Jameton AL (2000) Public health implications of urban agriculture. J Public Health Policy 21:20. https://doi.org/10.2307/3343472

    Article  CAS  PubMed  Google Scholar 

  7. El Khalil H, Schwartz C, Elhamiani O et al (2008) Contribution of technic materials to the mobile fraction of metals in urban soils in Marrakech (Morocco). J Soils Sediments 8:17–22. https://doi.org/10.1017/9781316528945.022

    Article  Google Scholar 

  8. Davis HT, Marjorie Aelion C, McDermott S, Lawson AB (2009) Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation. Environ Pollut 157:2378–2385. https://doi.org/10.1016/j.envpol.2009.03.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Izquierdo M, De Miguel E, Ortega MF, Mingot J (2015) Bioaccessibility of metals and human health risk assessment in community urban gardens. Chemosphere. 135:312–318. https://doi.org/10.1016/j.chemosphere.2015.04.079

    Article  CAS  PubMed  Google Scholar 

  10. Navarrete IA, Gabiana CC, Dumo JRE, Salmo SG, Guzman MALG, Valera NS, Espiritu EQ (2017) Heavy metal concentrations in soils and vegetation in urban areas of Quezon City, Philippines. Environ Monit Assess 189. https://doi.org/10.1007/s10661-017-5849-y

  11. El Khalil H, Schwartz C, El Hamiani O et al (2013) Distribution of major elements and trace metals as indicators of technosolisation of urban and suburban soils. J Soils Sediments 13:519–530. https://doi.org/10.1007/s11368-012-0594-x

    Article  CAS  Google Scholar 

  12. Pruvot C, Douay F, Hervé F, Waterlot C (2006) Heavy metals in soil, crops and grass as a source of human exposure in the former mining areas. J Soils Sediments 6:215–220. https://doi.org/10.1065/jss2006.10.186

    Article  CAS  Google Scholar 

  13. Schwartz C (2013) Jardins potagers: terres inconnues. EDP Sciences, Les Ulis

    Google Scholar 

  14. Kabala C, Chodak T, Szerszen L et al (2009) Factors influencing the concentration of heavy metals in soils of allotment gardens in the city of Wroclaw, Poland. Fresenius Environ Bull. https://doi.org/10.3109/07380577.2015.1036193

  15. El Hamiani O, El Khalil H, Lounate K et al (2010) Toxicity assessment of garden soils in the vicinity of mining areas in Southern Morocco. J Hazard Mater 177:755–761. https://doi.org/10.1016/j.jhazmat.2009.12.096

    Article  CAS  PubMed  Google Scholar 

  16. El Hamiani O, El Khalil H, Sirguey C et al (2015) Metal concentrations in plants from mining areas in South Morocco: health risks assessment of consumption of edible and aromatic plants. Clean Soil Air Water. https://doi.org/10.1002/clen.201300318

  17. Sabine M, Wendy G (2009) Human health effects of heavy metals. Environ Sci Technol Briefs Citizens 15:1–6

    Google Scholar 

  18. Carmichael WW (2001) Health effects of toxin-producing cyanobacteria: “the CyanoHABs”. Huma Ecol Risk Assess 7:1393–1407. https://doi.org/10.1080/20018091095087

    Article  Google Scholar 

  19. Bernstein JA, Alexis N, Barnes C, Bernstein IL, Nel A, Peden D, Diaz-Sanchez D, Tarlo SM, Williams PB, Bernstein JA (2004) Health effects of air pollution. J Allergy Clin Immunol 114:1116–1123. https://doi.org/10.1016/j.jaci.2004.08.030

    Article  PubMed  Google Scholar 

  20. McLean CM, Koller CE, Rodger JC, MacFarlane GR (2009) Mammalian hair as an accumulative bioindicator of metal bioavailability in Australian terrestrial environments. Sci Total Environ 407:3588–3596. https://doi.org/10.1016/j.scitotenv.2009.01.038

    Article  CAS  PubMed  Google Scholar 

  21. HCP (Haut-Commissariat au Plan) (2014) GRPH 2014. https://www.hcp.ma. Accessed 3 Jan 2019

  22. Urban-agriculture-Casablanca (2008) German-Moroccan research project of the German Federal Ministry of Education and Research (BMBF). http://uacm.freiraum.tuberlin.de/fr/accueil/index.html. Accessed 25 Nov 2018

  23. El Faïz M (2000) Jardins de Marrakech. Actes Sud, Arles

    Google Scholar 

  24. ADA (2017) Plan Agricole par région. In: Agence pour le Développement Agricole. http://www.ada.gov.ma. Accessed 20 Sept 2018

  25. El Khalil H, El Hamiani O, Bitton G et al (2008) Heavy metal contamination from mining sites in South Morocco: monitoring metal content and toxicity of soil runoff and groundwater. Environ Monit Assess 136:147–160

    Article  CAS  Google Scholar 

  26. RADEEMA (Régie Autonome de Distribution d'Eau et d'Electricité) (2019) https://www.radeema.ma/step. Accessed 4 Jan 2019

  27. Chaoua S, Boussaa S, El Gharmali A, Boumezzough A (2018) Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. J Saudi Soc Agric Sci. https://doi.org/10.1016/j.jssas.2018.02.003

  28. Hamazaki T, Paningbatan JE (1988) Procedures for soil analysis. College of Agriculture, UP Los Banos and Tropical Agricultural Research Center, Japan Technical Paper 1:94

  29. Alef K, Nannipieri P (1995) Methods in applied soil microbiology and biochemistry: enzyme activities

  30. Nelson D W, Sommers LE (1996) Total Carbon, organic carbon and organic matter. In: DL Sparks et al. (Eds.), Methods of soil analysis. Part 3. Chemical methods, SSSA Book Ser. 5, Madison, pp. 961–1010

  31. Olsen SR (1982) Anion resin extractable phosphorus. Method Soil Anal 2:423–424

  32. Zheng N, Wang Q, Zheng D (2007) Health risk of Hg, Pb, Cd, Zn, and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables. Sci Total Environ 383:81–89

    Article  CAS  Google Scholar 

  33. Khan S, Rehman S, Zeb Khan A, Amjad Khan M, Tahir Shah M (2010) Soil and vegetables enrichment with heavy metals from geological sources in Gilgit, northern Pakistan. Ecotoxicol Environ Saf 73:1820–1827. https://doi.org/10.1016/j.ecoenv.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  34. USEPA (US Environmental Protection Agency) (1996). Soil screening guidance: Technical background document. EPA/540/R-95/128

  35. FAO (2012) Livestock sector development for poverty reduction: an economic and policy perpective. In: Otte J, Costales A, Dijikman J, et al (eds) Aliving from livestock. p 161

  36. Ge KY (1992) The status of nutrient and meal of Chinese in the 1990s. Beijing People’s Hygiene Press, Beijing, pp 415–434

    Google Scholar 

  37. Wang X, Sato T, Xing B, Tao S (2005) Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci Total Environ 350:28–37

    Article  CAS  Google Scholar 

  38. Oliveira Da Silva AL, Barrocas PRG, Do Couto Jacob S, Moreira JC (2005) Dietary intake and health effects of selected toxic elements. Braz J Plant Physiol 17(1):79–93

    Article  CAS  Google Scholar 

  39. Agbenin JO, Danko M, Welp G (2009) Soil and vegetable compositional relationships of eight potentially toxic metals in urban garden fields from northern Nigeria. J Sci Food Agric 89:49–54. https://doi.org/10.1002/jsfa.3409

    Article  CAS  Google Scholar 

  40. EC (European Commission) (2000) Working document on sludge. 3rd draft. Env E 80:1–19

    Google Scholar 

  41. MEF (Ministry of the Environment, Finland) (2007) Government decree on the assessment of soil contamination and remediation needs (214/2007). Ministry of the Environment Helsinki (FI), p 6

  42. WHO/FAO (2007) Joint FAO/WHO Food Standard Programme Codex Alimentarius Commission 13th Session. Report of the Thirty-Eight Session of the Codex Committee on Food Hygiene, Houston, United States of America, ALINORM 07/30/13

  43. Sani HA, Tsafe AI, Bagudo BU, Itodo AU (2011) Toxic metals uptake by spinach (Spinacea oleracea) and lettuce (Lactuca sativa) cultivated in Sokoto: a comparative study. Pak J Nutr 10:572–576. https://doi.org/10.3923/pjn.2011.572.576

    Article  CAS  Google Scholar 

  44. Itanna F (2002) Metals in leafy vegetables grown in Addis Ababa and toxicological implications. Ethiop J Health Dev 16. https://doi.org/10.4314/ejhd.v16i3.9797

  45. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press LLC, Boca Raton

    Google Scholar 

  46. Gonzalez-Fernandez O, Batista MJ, Abreu MM, Queralt I, Carvalho ML (2011) Elemental characterization of edible plants and soils in an abandoned mining region: assessment of environmental risk. X-Ray Spectrom 40:353–363. https://doi.org/10.1002/xrs.1348

    Article  CAS  Google Scholar 

  47. Nordberg GF, Fowler BA, Nordberg M (2014) Handbook on the toxicology of metals: Fourth Edition. Elsevier Inc. https://doi.org/10.1016/C2011-0-07884-5

  48. Voutsa D, Grimanis A, Samara C (1996) Trace elements in vegetables grown in an industrial area in relation to soil and air particulate matter. Environ Pollut 94:325–335. https://doi.org/10.1016/S0269-7491(96)00088-7

    Article  CAS  PubMed  Google Scholar 

  49. Mohamed AE, Rashed MN, Mofty A (2003) Assessment of essential and toxic elements in some kinds of vegetables. Ecotoxicol Environ Saf 55:251–260. https://doi.org/10.1016/S0147-6513(03)00026-5

    Article  CAS  PubMed  Google Scholar 

  50. Lui W-X, Li H-H, Li SR, Wang Y-W (2006) Heavy metal accumulation of edible vegetables cultivated in agricultural soil in the suburb of Zhengzhou City, People’s Republic of China. Bull Environ Contam Toxicol 76:163–170. https://doi.org/10.1007/s00128-005-0903-9

    Article  CAS  PubMed  Google Scholar 

  51. El Khalil H, Schwartz C, El Hamiani O et al (2016) How physical alteration of technic materials affects mobility and phytoavailabilty of metals in urban soils? Chemosphere. 152:407–414. https://doi.org/10.1016/j.chemosphere.2016.02.116

    Article  CAS  PubMed  Google Scholar 

  52. Norra S, Stuben D (2003) Urban soils. J Soils Sediments 3:230–233. https://doi.org/10.1007/BF02988664

    Article  Google Scholar 

  53. Manara A (2012) Plant responses to heavy metal toxicity BT - Plants and heavy metals. In: Furini A (ed). Springer Netherlands, Dordrecht, pp 27–53

  54. Evlard A, Campanella B (2013) Impact des éléments-traces métalliques sur les plantes et les techniques de phytoremédiation. In: Druart P, Husson C, Paul R (eds) Renaturation des berges de cours d’eau et phytoremédiation. Presses agronomiques de Gembloux, Gembloux, pp 59–75

    Google Scholar 

  55. Gjorgieva Ackova D (2018) Heavy metals and their general toxicity for plants. Plant Sci Today 5:14. https://doi.org/10.14719/pst.2018.5.1.355

    Article  CAS  Google Scholar 

  56. Manta DS, Angelone M, Bellanca A, Neri R, Sprovieri M (2002) Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ 300:229–243. https://doi.org/10.1016/S0048-9697(02)00273-5

    Article  CAS  PubMed  Google Scholar 

  57. Naylo A, Pereira SIA, Benidire L et al (2019) Trace and major element contents, microbial communities, and enzymatic activities of urban soils of Marrakech city along an anthropization gradient. J Soils Sediments 19:1–13. https://doi.org/10.1007/s11368-018-2221-y

    Article  CAS  Google Scholar 

  58. Bolan NS, Adriano DC, Natesan R, Koo B-J (2003) Effects of organic amendments on the reduction and phytoavailability of chromate in mineral soil. J Environ Qual 32. https://doi.org/10.2134/jeq2003.1200

  59. Gil C, Boluda R, Ramos J (2004) Determination and evaluation of cadmium, lead and nickel in greenhouse soils of Almería (Spain). Chemosphere. 55:1027–1034. https://doi.org/10.1016/j.chemosphere.2004.01.013

    Article  CAS  PubMed  Google Scholar 

  60. Susaya JP, Kim K-H, Asio VB, Chen ZS, Navarrete I (2010) Quantifying nickel in soils and plants in an ultramafic area in Philippines. Environ Monit Assess 167:505–514

    Article  CAS  Google Scholar 

  61. Boularbah A, Schwartz C, Bitton G, Morel JL (2006) Heavy metal contamination from mining sites in South Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere 63:802–810. https://doi.org/10.1016/j.chemosphere.2005.07.079

    Article  CAS  PubMed  Google Scholar 

  62. Deneux-Mustin S, Roussel-Debet S, Mustin C, et al (2003) Mobilité et transfert racinaire des éléments en traces: influence des micro-organismes du sol. Paris

  63. Codex A, Intergovernmental Tfon (2001) Joint FAO/WHO Food Standard Programme Codex Alimentarius Commission Twenty-fourth Session Geneva, 2–7 July 2001. Codex

  64. Codex Alimentarius Committe (1995) Joint FAO/WHO Food Standards Programme, vol 21. Food and Agriculture Organization, Rome, pp 3–8

    Google Scholar 

  65. Food and Agriculture Organization of United Nations World Health Organization (2018). Codex Alimentarius International Food Standards. Food andAgriculture Organization of United Nations World Health Organization, vol. 49, p 475

  66. SEPA (2005) The limits of pollutants in food. GB:2762–2005

  67. Council of the European Union, Commission of the European Union (2006) Commission regulation 2006/1881/EC of 19 December 2006. Setting maximum levels for certain contaminants in foodstuffs. Off J Eur Communities:L364–L365. https://doi.org/10.1080/19440049.2013.775605

  68. Bielinska EJ, Mocek-Plociniak A (2010) Impact of the ecochemical soil condition on the content of selected heavy metals in vegetables from gardening allotments. Pol J Environ Stud 19:895–900

    CAS  Google Scholar 

  69. Gupta N, Khan DK, Santra SC (2008) An assessment of heavy metal contamination in vegetables grown in wastewater-irrigated areas of Titagarh, West Bengal, India. Bull Environ Contam Toxicol 80:115–118. https://doi.org/10.1007/s00128-007-9327-z

    Article  CAS  PubMed  Google Scholar 

  70. Golia EE, Dimirkou A, Mitsios IK (2008) Influence of some soil parameters on heavy metals accumulation by vegetables grown in agricultural soils ofdifferent soil orders. Bull Environ Contam Toxicol 81:80–84. https://doi.org/10.1007/s00128-008-9416-7

  71. Oliver MA (1997) Soil and human health: a review. Eur J Soil Sci 48:573–592

    Article  CAS  Google Scholar 

  72. El Khalil H (2007) Variabilité et évolution de la qualité des sols urbains et péri-urbains de la ville de Marrakech: approches géochimique, agronomique, toxique et écotoxique. Université Cadi Ayyad, Marrakesh

    Google Scholar 

  73. Gimeno-García E, Andreu V, Boluda R (1996) Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils. Environ Pollut 92:19–25. https://doi.org/10.1016/0269-7491(95)00090-9

    Article  PubMed  Google Scholar 

  74. Huang SW, Jin JY (2008) Status of heavy metals in agricultural soils as affected by different patterns of land use. Environ Monit Assess 139:317–327. https://doi.org/10.1007/s10661-007-9838-4

    Article  CAS  PubMed  Google Scholar 

  75. Khan K, Lu Y, Khan H, Ishtiaq M, Khan S, Waqas M, Wei L, Wang T (2013) Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food Chem Toxicol 58:449–458. https://doi.org/10.1016/j.fct.2013.05.014

    Article  CAS  PubMed  Google Scholar 

  76. Amiri SS, Maralian H, Aghabarati A (2008) Heavy metal accumulation in Melilotus officinalis under crown Olea europaea L forest irrigated with wastewater. Afr J Biotechnol. https://doi.org/10.5897/AJB08.668

  77. Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  78. Chojnacka K, Chojnacki A, Górecka H, Górecki H (2005) Bioavailability of heavy metals from polluted soils to plants. Sci Total Environ 337:175–182. https://doi.org/10.1016/j.scitotenv.2004.06.009

    Article  CAS  PubMed  Google Scholar 

  79. Intawongse M, Dean JR (2006) Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Addit Contam 23:36–48. https://doi.org/10.1080/02652030500387554

    Article  CAS  PubMed  Google Scholar 

  80. Sridhara Chary N, Kamala CT, Samuel Suman Raj D (2008) Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol Environ Saf 69:513–524. https://doi.org/10.1016/j.ecoenv.2007.04.013

    Article  CAS  PubMed  Google Scholar 

  81. Nayek S, Gupta S, Saha RN (2010) Metal accumulation and its effects in relation to biochemical response of vegetables irrigated with metal contaminated water and wastewater. J Hazard Mater 178:588–595. https://doi.org/10.1016/j.jhazmat.2010.01.126

  82. Gupta S, Satpati S, Nayek S, Garai D (2010) Effect of wastewater irrigation on vegetables in relation to bioaccumulation of heavy metals and biochemical changes. Environ Monit Assess 165:169–177. https://doi.org/10.1007/s10661-009-0936-3

    Article  CAS  PubMed  Google Scholar 

  83. Kim RY, Yoon JK, Kim TS, Yang JE, Owens G, Kim KR (2015) Bioavailability of heavy metals in soils: definitions and practical implementation—a critical review. Environ Geochem Health 37:1041–1061. https://doi.org/10.1007/s10653-015-9695-y

    Article  CAS  PubMed  Google Scholar 

  84. Obiora SC, Chukwu A, Davies TC (2016) Heavy metals and health risk assessment of arable soils and food crops around Pb-Zn mining localities in Enyigba, southeastern Nigeria. J Afr Earth Sci 116:182–189. https://doi.org/10.1016/j.jafrearsci.2015.12.025

    Article  CAS  Google Scholar 

  85. Eichert T, Burkhardt J (2001) Quantification of stomatal uptake of ionic solutes using a new model system. J Exp Bot 52:771–781. https://doi.org/10.1093/jexbot/52.357.771

    Article  CAS  PubMed  Google Scholar 

  86. El Fadeli S, Bouhouch R, El Abbassi A, et al (2014) Health risk assessment of lead contamination in soil, drinking water and plants from Marrakechurban area, Morocco. J Mater Environ Sci. 5:225–230

  87. Cui YJ, Zhu YG, Zhai RH, Chen DY, Huang YZ, Qiu Y, Liang JZ (2004) Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environ Int 30:785–791. https://doi.org/10.1016/j.envint.2004.01.003

    Article  CAS  PubMed  Google Scholar 

  88. Moreno-Jiménez E, Peñalosa JM, Manzano R, Carpena-Ruiz RO, Gamarra R, Esteban E (2009) Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. J Hazard Mater 162:854–859. https://doi.org/10.1016/j.jhazmat.2008.05.109

    Article  CAS  PubMed  Google Scholar 

  89. Ahmad JU, Goni MA (2010) Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh. Environ Monit Assess 166:347–357. https://doi.org/10.1007/s10661-009-1006-6

    Article  CAS  PubMed  Google Scholar 

  90. Mapanda F, Mangwayana EN, Nyamangara J, Giller KE (2007) Uptake of heavy metals by vegetables irrigated using wastewater and the subsequent risks in Harare, Zimbabwe. Phys Chem Earth 32:1399–1405. https://doi.org/10.1016/j.pce.2007.07.046

    Article  Google Scholar 

  91. Dong WQY, Cui Y, Liu X (2001) Instances of soil and crop heavy metal contamination in China. Soil Sediment Contam 10:497–510

    Article  Google Scholar 

  92. Sheng PH, Zhou AX, Li PJ (2001) Pollution ecology. Science Press, Beijing, p 284

  93. Berg H, Kiibus M, Kautsky N (2001) Heavy metals in tropical Lake Kariba, Zimbabwe. J Water Air Soil Pollut 82:1–6

    Google Scholar 

  94. USEPA (2011) Exposure Factors Handbook 2011 Edition (Final Report). US Environmental Protection Agency, Washington, DC, EPA/600/R-09/052F

  95. Singh A, Sharma RK, Agrawal M, Marshall FM (2010) Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem Toxicol 48:611–619. https://doi.org/10.1016/j.fct.2009.11.041

    Article  CAS  PubMed  Google Scholar 

  96. Sharma RK, Agrawal M, Marshall FM (2008) Atmospheric deposition of heavy metals (Cu, Zn, Cd and Pb) in Varanasi City, India. Environ Monit Assess 142:269–278. https://doi.org/10.1007/s10661-007-9924-7

    Article  CAS  PubMed  Google Scholar 

  97. Alloway BJ (2013) In: Alloway BJ (ed) Sources of heavy metals and metalloids in soils BT—heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer Netherlands, Dordrecht, pp 11–50

    Google Scholar 

  98. Chrysafopoulou E, Kadukova J, Kalogerakis N (2005) A whole-plant mathematical model for the phytoextraction of lead (Pb) by maize. Environ Int 31:255–262

    Article  CAS  Google Scholar 

  99. Aggarwal H, Goyal D (2007) Phytoremediation of some heavy metals by agronomic crops. Dev Environ Sci 5:79–98

    CAS  Google Scholar 

  100. WHO/FAO (2013) Guidelines for the safe use of wastewater and food stuff: volume 2: No 114. In: Wastewater use in agriculture, vol 2. World Health Organization, Geneva, p 988

    Google Scholar 

  101. USEPA (2015) USEPA Integrated Risk Information System (IRIS). United States Environmental Protection Agency, Washington, D.C, pp 2–3

    Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support provided by the Centre National de Recherche Scientifiques et Techniques (CNRST-Morocco) under grant no. PPR/2015/22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Boularbah.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laaouidi, Y., Bahmed, A., Naylo, A. et al. Trace Elements in Soils and Vegetables from Market Gardens of Urban Areas in Marrakech City. Biol Trace Elem Res 195, 301–316 (2020). https://doi.org/10.1007/s12011-019-01849-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01849-6

Keywords

Navigation