Skip to main content

Advertisement

Log in

Assessment of natural arsenic in groundwater in Cordoba Province, Argentina

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Groundwater in the central part of Argentina contains arsenic concentrations that, in most cases, exceed the value suggested by international regulations. In this region, Quaternary loessical sediments with a very high volcanic glass fraction lixiviate arsenic and fluoride after weathering. The objectives of this study are to analyze the spatial distribution of arsenic in different hydrogeological regions, to define the naturally expected concentration in an aquifer by means of hydrogeochemistry studies, and to identify emergent health evidences related to cancer mortality in the study area. The correlation between arsenic and fluoride concentrations in groundwater is analyzed at each county in the Cordoba Province. Two dimensionless geoindicators are proposed to identify risk zones and to rapidly visualize the groundwater quality related to the presence of arsenic and fluoride. A surface-mapping system is used to identify the spatial variability of concentrations and for suggesting geoindicators. The results show that the Chaco-Pampean plain hydrogeologic region is the most affected area, with arsenic and fluoride concentrations in groundwater being generally higher than the values suggested by the World Health Organization (WHO) for drinking water. Mortality related to kidney, lung, liver, and skin cancer in this area could be associated to the ingestion of arsenic-contaminated water. Generated maps provide a base for the assessment of the risk associated to the natural occurrence of arsenic and fluoride in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a, b
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abernathy, C. O., Liu, Y. P., Longfellow, D., Aposhian, H. V., Beck, B., Fowler, B., et al. (1999). Arsenic: Health effects, mechanisms of actions, and research issues. Environmental Health Perspectives, 107(7), 593–597. doi:10.2307/3434403.

    Article  CAS  Google Scholar 

  • Bates, M. N., Rey, O. A., Biggs, M. L., Hopenhayn Rich, C., Moore, L. E., Kalman, D., et al. (2004). Case–control study of bladder cancer and exposure to arsenic in Argentina. American Journal of Epidemiology, 159(4), 381–389. doi:10.1093/aje/kwh054.

    Article  Google Scholar 

  • Berger, A. R. (1997). Assessing rapid environmental change using geoindicators. Environmental Geology, 32(1), 36–44. doi:10.1007/s002540050191.

    Article  Google Scholar 

  • Bergoglio, R. M. (1963). Mortalidad por cáncer en zona de aguas arsenicales de la provincia de Córdoba (República Argentina). In Paper presented at the V Congreso Ibero-Latinoamericano de Dermatología, Buenos Aires.

  • Bhattacharya, P., Claesson, M., Bundschuh, J., Sracek, O., Fagerberg, J., Jacks, G., et al. (2006). Distribution and mobility of arsenic in the Río Dulce alluvial aquifers in Santiago del Estero Province, Argentina. Science of the Total Environment, 358, 97–120. doi:10.1016/j.scitotenv.2005.04.048.

    Article  CAS  Google Scholar 

  • de Marsily, G. (1986). Quantitative hydrogeology: Groundwater hydrology for engineers. Orlando, Florida: Academic Press.

    Google Scholar 

  • Francisca, F. M. (2007). Evaluating the constrained modulus and collapsibility of loess from standard penetration test. ASCE International Journal of Geomechanics, 7(4), 307–310. doi:10.1061/(ASCE)1532-3641(2007)7:4(307).

    Article  Google Scholar 

  • Francisca, F. M., Redolfi, E. R., & Prato, C. A. (2002). Análisis de tuberías enterradas en suelos loéssicos: efecto de la saturación del suelo. Revista Internacional de Desastres Naturales Accidentes e Infraestructura Civil, 2(2), 3–19.

    Google Scholar 

  • García, M. G., Moreno, C., Fernandez, D. S., Galindo, M. C., Sracek, O., & Hidalgo, V. M. (2006). Intermediate to high levels of arsenic and fluoride in deep geothermal aquifers from the northwestern Chacopampean Plain, Argentina. In Paper presented at the conference on Natural Arsenic in Groundwaters of Latin America, Mexico City.

  • Giedraitiene, J., Satkunas, J., Graniczny, M., & Doktor, S. (2002). The chemistry of groundwater: A geoindicator of environmental change across the Polish–Lithuanian border. Environmental Geology, 42(7), 743–749. doi:10.1007/s00254-002-0555-6.

    Article  CAS  Google Scholar 

  • Guo, H.-R., & Tseng, Y.-C. (2000). Arsenic in drinking water and bladder cancer: Comparison between studies based on cancer registry and death certificates. Environmental Geochemistry and Health, 22, 83–91. doi:10.1023/A:1006759002674.

    Article  CAS  Google Scholar 

  • Hopenhayn-Rich, C., Biggs, M. L., & Smith, A. H. (1998). Lung and kidney cancer mortality associated with arsenic in drinking water in Cordoba, Argentina. International Journal of Epidemiology, 27, 561–569. doi:10.1093/ije/27.4.561.

    Article  CAS  Google Scholar 

  • Instituto Nacional de Estadísticas y Censos. (2001). Censo Nacional de Población, Hogares y Viviendas. Argentina: Resultados generales Cordoba.

    Google Scholar 

  • Karlsson, A. (1993). Método mineralógico para la tipificación numérica de sedimentos loéssicos. Revista de Geología Aplicada a la Ingeniería y al Ambiente, 7, 199–204.

    Google Scholar 

  • Krige, D. G. (1978). Lognormal-de Wijsian geostatistics for ore evaluation (geostatistics). Johannesburg: South African Institute of Mining and Metallurgy.

    Google Scholar 

  • Kröhling, D. M. (1999). Sedimentological maps of the typical loessic units in North Pampa, Argentina. Quaternary International, 62(1), 49–55. doi:10.1016/S1040-6182(99)00022-1.

    Article  Google Scholar 

  • Marengo, E., Gennaro, M. C., Robotti, E., Maiocchi, A., Pavese, G., Indaco, A., et al. (2008). Statistical analysis of ground water distribution in Alessandria Province (Piedmont—Italy). Microchemical Journal, 88, 167–177. doi:10.1016/j.microc.2007.11.011.

    Article  CAS  Google Scholar 

  • Nicolli, H. B., Suriano, J. M., Gómez Peral, M. A., Ferpozzi, L. H., & Baleani, O. A. (1989). Groundwater contamination with arsenic and other trace elements in an area of the Pampa, Province of Cordoba, Argentina. Environmental Geology, 14, 3–16.

    CAS  Google Scholar 

  • Obras Sanitarias de la Nación. (1942). El problema del agua potable en el interior del país: Tomo II Análisis Químicos. Buenos Aires: Ministerio de Obras Públicas.

    Google Scholar 

  • Paoloni, J. D., Sequeira, M. E., & Fiorentino, C. E. (2005). Mapping of arsenic content and distribution in groundwater in the Southeast Pampa, Argentina. Journal of Environmental Health, 67(8), 51–53.

    Google Scholar 

  • Rapport, D., & Friend, A. (1979). Towards a comprehensive framework for environmental statistics: A stress–response approach. Statistics Canada Catalogue 11-510. Ottawa: Minister of Supply and Services Canada.

  • Rocca, R. J., Redolfi, E. R., & Terzariol, R. E. (2006). Características geotécnicas de los loess de Argentina. Revista Internacional de Desastres Naturales Accidentes e Infraestructura Civil, 6(2), 3–19.

    Google Scholar 

  • Santa Cruz, J. N., & Silva Busso, A. (1999). Escenario hidrogeológico General de los Principales Acuíferos de la Llanura Pampeana y Mesopotamia Meridional Argentina. In Paper presented at the II Congreso Argentino de Hidrogeología, Santa Fe.

  • Sayago, J. M., Collantes, M. M., Karlson, A., & Sanabria, J. (2001). Genesis and distribution of the Late Pleistocene and Holocene loess of Argentina: A regional approximation. Quaternary International, 76/77, 247–257. doi:10.1016/S1040-6182(00)00107-5.

    Article  Google Scholar 

  • Schulz, C. J., Castro, E. C., & Mariño, E. (2005). Presencia de Arsénico en las Aguas Subterráneas de la Pampa. In Paper presented at the IV Congreso Hidrogeológico Argentino, Río Cuarto.

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568. doi:10.1016/S0883-2927(02)00018-5.

    Article  CAS  Google Scholar 

  • Smedley, P. L., Kinniburgh, D. G., Macdonald, D. M. J., Nicolli, H. B., Barros, A. J., Tullio, J. O., et al. (2005). Arsenic associations in sediments from the loess aquifer of La Pampa, Argentina. Applied Geochemistry, 20, 989–1016. doi:10.1016/j.apgeochem.2004.10.005.

    Article  CAS  Google Scholar 

  • Smith, A. H., Hopenhayn-Rich, C., Bates, M. N., Goeden, H. M., Hertz-Picciotto, I., Duggan, H. M., et al. (1992). Cancer risks from arsenic in drinking water. Environmental Health Perspectives, 97, 259–267. doi:10.2307/3431362.

    Article  CAS  Google Scholar 

  • Smith, A. H., Arroyo, A. P., Mazumder, D. N. G., Kosnett, M. J., Hernandez, A. L., Beeris, M., et al. (2000). Arsenic-induced skin lesions among Atacameño people in Northern Chile despite good nutrition and centuries of exposure. Environmental Health Perspectives, 108(7), 617–620. doi:10.2307/3434881.

    Article  CAS  Google Scholar 

  • Teruggi, M. E. (1957). The nature and origin of Argentine loess. Journal of Sedimentary Petrology, 27, 323–332.

    Google Scholar 

  • Tricart, J. (1969). Actions éoliennes dans la Pampa Deprimida. Revue de Géomorphologie Dynamique, 4, 178–189.

    Google Scholar 

  • Wu, M. M., Kuo, T. L., Hwang, Y. H., & Chen, C. J. (1989). Dose–response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. American Journal of Epidemiology, 130, 1123–1132.

    CAS  Google Scholar 

  • World Health Organization. (2006). Guidelines for drinking-water quality: incorporating first addendum (Vol. 1, Recommendations, 3rd ed.). Geneva.

  • Zárate, M. A. (2003). Loess of southern South America. Quaternary Science Reviews, 22(18–19), 1987–2006. doi:10.1016/S0277-3791(03)00165-3.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank CONICET and SECYT for their support in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco M. Francisca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francisca, F.M., Carro Perez, M.E. Assessment of natural arsenic in groundwater in Cordoba Province, Argentina. Environ Geochem Health 31, 673–682 (2009). https://doi.org/10.1007/s10653-008-9245-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-008-9245-y

Keywords

Navigation