Skip to main content

Advertisement

Log in

Relationship between plant biodiversity and heavy metal bioavailability in grasslands overlying an abandoned mine

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Abandoned metal mines in the Sierra de Guadarrama, Madrid, Spain, are often located in areas of high ecological value. This is true of an abandoned barium mine situated in the heart of a bird sanctuary. Today the area sustains grasslands, interspersed with oakwood formations of Quercus ilex and heywood scrub (Retama sphaerocarpa L.), used by cattle, sheep and wild animals. Our study was designed to establish a relationship between the plant biodiversity of these grasslands and the bioavailability of heavy metals in the topsoil layer of this abandoned mine. We conducted soil chemical analyses and performed a greenhouse evaluation of the effects of different soil heavy metal concentrations on biodiversity. The greenhouse bioassays were run for 6 months using soil samples obtained from the mine polluted with heavy metals (Cu, Zn, Pb and Cd) and from a control pasture. Soil heavy metal and Na concentrations, along with the pH, had intense negative effects on plant biodiversity, as determined through changes in the Shannon index and species richness. Numbers of grasses, legumes, and composites were reduced, whilst other species (including ruderals) were affected to a lesser extent. Zinc had the greatest effect on biodiversity, followed by Cd and Cu. When we compared the sensitivity of the biodiversity indicators to the different metal content variables, pseudototal metal concentrations determined by X-ray fluorescence (XRF) were the most sensitive, followed by available and soluble metal contents. Worse correlations between biodiversity variables and metal variables were shown by pseudototal contents obtained by plasma emission spectroscopy (ICP-OES). Our results highlight the importance of using as many different indicators as possible to reliably assess the response shown by plants to heavy metal soil pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: Biogeochemistry, bioavailability, and risks of metals. New York: Springer-Verlag.

    Google Scholar 

  • Bagatto, G., & Shorthouse, J. D. (1999). Biotic and abiotic characteristics of ecosystems on metaliferous mine tailings near Sudbury, Ontario. Canadian Journal of Botany, 77, 410–425.

    Article  Google Scholar 

  • Bouwman, L. A., Bloem, J., Römkens, P. F. A. M., Boon, G. T., & Vangronsveld, J. (2001). Beneficial effects of the growth of metal tolerant grass on biological and chemical parameters in copper and zinc contaminated sandy soils. Minerva Biotecnologica, 13, 19–26.

    Google Scholar 

  • Edwards, C. A. (2002). Assessing the effects of environmental pollutants on soil organisms, communities, processes and ecosystems. European Journal of Soil Biology, 38, 225–231.

    Article  CAS  Google Scholar 

  • Edwards, C. A., Subler, S., Chen, S. K., & Bogomolov, D. M. (1996). Essential criteria for selecting bioindicators species, processes, or systems to assess the environmental impact of chemicals on soil ecosystems. In N. M. van Straalen, & D. A. Krivolutsky (Eds.), Bioindicator systems for soil pollution (pp. 67–84). Dordercht: Kluwer Academic.

    Google Scholar 

  • Freitas, H., Prasad, M. N. V., & Pratas, J. (2004). Plant community tolerant to trace elements growing on the degraded soils of Sao Domingos mine in the south east of Portugal: environmental implications. Environment International, 30, 65–72.

    Article  CAS  Google Scholar 

  • Gray, C. V., & Mclaren, R. G. (2006). Soil factors affecting heavy metal solubility in some New Zealand soils. Water Air and Soil Pollution, 175, 3–14.

    Article  CAS  Google Scholar 

  • Gutierrez, A., Morcillo, E., Guijarro, J., & Moreno, A. (1986). Mineralizaciones de baritina y fluorita con sulfuros asociados del SO de la Sierra del Guadarrama. Revista de Materiales y Procesos Geológicas, IV, 103–126.

    Google Scholar 

  • Gutierez-Maroto, A., Sobrados, L., Jimenez-Ballesta, R., Morcillo, E., & Alvarez J. B. (1989). Dispersión de elementos pesados y su incidencia en el medio natural. Boletín Geológico y Minero, 100–105, 886–896.

    Google Scholar 

  • Gyedu-Ababio, T. K., Furstenberg, J. P., Baird, D., & Vanreusel, A. (1999). Nematodes as indicators of pollution: A case study from the Swartkops river system, S. Africa. Hydrobiologia, 397, 155–169.

    Article  CAS  Google Scholar 

  • ITGM (1990). San Martín de Valdeiglesias. Memoria y hoja. Mapa Geológico de España, Escala 1: 50000. Instituto Tecnológico GeoMinero de España, Madrid.

  • Hernández, A. J., & Pastor, J. (1989). Técnicas analíticas para el estudio de las interacciones suelo planta. Henares Revista de Geología, 3, 67–102.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. CRC Press.

  • Kandeler, E., Kampichler, C., & Horak, O. (1996). Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils 23, 299–306.

    Article  CAS  Google Scholar 

  • Koptsik, S., Koptsik, G., Livantsova, S., Eruslankina, L., Zhmelkova, T., & Vologdina, Z. (2003). Heavy metals in soils near the nickel smelter: Chemistry, spatial variation and impacts on plant diversity. Journal of Environmental Monitoring, 5, 441–450.

    Article  CAS  Google Scholar 

  • Lakanen, E., & Ervio, R. (1971). A comparison of eight extractants for the determination of plant available micronutrients in soils. Acta Agriculturica Fennica, 123, 223–232.

    Google Scholar 

  • Monteiro, M. T., Oliveira, R., & Vale, C. (1995). Metal stress on the plankton of Sado River (Portugal). Water Research, 29, 695–701.

    Article  CAS  Google Scholar 

  • Monturiol, F. & Alcala del Olmo, L. (1990). Mapa de asociaciones de suelos de la Comunidad de Madrid. CAM. Consejería de Agricultura y Cooperación y CSIC, Madrid.

  • Müller, A. K., Westergaard, K., Christensen, S., & Sørensen, S. J. (2002). The diversity and function of soil microbial communities exposed to different disturbances. Microbial Ecology, 44, 49–58.

    Article  Google Scholar 

  • Nahmani, J., & Lavelle, P. (2002). Effects of heavy metal pollution on soil macrofauna in a grassland of northern France. European Journal of Soil Biology, 38, 297–300.

    Article  CAS  Google Scholar 

  • Peinado, M. (1970). Carácter del metamorfismo en el macizo metamórfico El Escorial-Villa del Prado (Sistema Central Español). Estudios Geológicos, 26, 323–326.

    Google Scholar 

  • Salminen, J., van Gestel, C. A., & Oksanen, J. 2001. Pollution-induced community tolerance and functional redundancy in a decomposer food web in metal-stressed soil. Environmental Toxicology and Chemistry, 20, 2287–2295.

    Article  CAS  Google Scholar 

  • Sharma, M. S., Liyaquat, F., Barbar, D., & Chisty, N. (2000). Biodiversity of freshwater zooplankton in relation to heavy metal pollution. Pollution Research, 19, 147–157.

    CAS  Google Scholar 

  • Spellerberg, I. A., & Fedor, P. (2003). Atribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the “Shannon–Wiener” index. Global Ecology & Biogeography 12, 177–179.

    Article  Google Scholar 

  • SPSS Inc. (2004). SPSS 13.0 Guía Breve. Chicago, EE.UU.

    Google Scholar 

  • Urcelai, A., Hernandez, A. J., & Pastor, J. (2000). Biotic indices based on soil nematode communities for assessing soil quality in terrestrial ecosystems. Science of the Total Environment, 247, 253–261.

    Article  Google Scholar 

  • Vangronsveld, J., Colpaert, J. V., & Van Tichelen, K. K. (1996). Reclamation of a bare industrial area contaminated by non-ferrous metals: physicochemical and biological evaluation of the durability of soil treatment and revegetation. Environmental Pollution, 94, 131–140.

    Article  CAS  Google Scholar 

  • van Straalen, N. M., & Krivolutsky, D. A. (1996). Bioindicator systems for soil pollution. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Vidic, T., Jogan, N., Drobne, D., & Vilhar, B. (2006). Natural revegetation in the vicinity of the former lead smelter in Zerjav, Slovenia. Environmental Science and Technology, 40, 4119–4125.

    Article  CAS  Google Scholar 

  • Yao, H. Y., Liu, Y. Y., Xue, D., & Huang, C. Y. (2006). Effect of copper on phospholipid fatty acid composition of microbial communities in two red soils. Journal of Environmental Science, 18, 503–509.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by an MEC Project CTM2005-02165/TECNO, the EIADES Program of the CM and a grant from the Spanish Ministry of the Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Pastor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernández, A.J., Pastor, J. Relationship between plant biodiversity and heavy metal bioavailability in grasslands overlying an abandoned mine. Environ Geochem Health 30, 127–133 (2008). https://doi.org/10.1007/s10653-008-9150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-008-9150-4

Keywords

Navigation