Skip to main content
Log in

Assessment of groundwater contamination caused by uncontrolled dumping in old gravel quarries in the Besòs aquifers (Barcelona, Spain)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The contamination of groundwater in the aquifer of the La Llagosta basin (Besòs river basin) due to waste disposal in quarries formerly used for the extraction of dry raw materials has led to the cessation of groundwater extraction for public water supply. The mobilization of pollutants was largely caused by fluctuations in piezometric levels, which led to the washing of buried waste. The hydrogeochemical processes associated with uncontrolled waste disposal in these landfilled areas of the La Llagosta basin aquifer were studied along a flow path that crosses the contaminated area. The PHREEQC code was used to establish the reactions associated with the different mineral phases through inverse modeling. This transport code, ionic exchange phenomena, surface reactions and balance (mineral phase) reactions were used to simulate the dilution phenomenon associated with the pollution after the potential removal of the sources of contamination. One-dimensional advective–dispersive modeling indicates a substantial reduction in Ca, Mg, Na and SO 2−4 within one year and stabilization within four years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Anawar, H. M., Akai, J., Yoshioka, T., Konohira, E., Lee, J. Y., Fukuhara, H., Tari Kul Alam, M., & García-Sánchez, A. (2006). Mobilization of arsenic in groundwater of Bangladesh: Evidence from an incubation study. Environmental Geochemistry and Health, 28, 553–565.

    Article  CAS  Google Scholar 

  • Baedecker, M. J., & Back, W. (1980). Hydrogeological processes and chemical reactions at a landfill. Ground Water, 17(5), 429–437.

    Article  Google Scholar 

  • Enrique, P. (1978). Las rocas graníticas de la Cordillera Litoral Catalana, entre Mataró y Barcelona. Acta Geológica Hispánica, XIII, 81–86.

    Google Scholar 

  • Facchinelli, A., Sacchi, E., Tararbra, M., & De Luca, D. A. (2001). Assessment of chromium release from steel manufacturing waste. Environmental Geochemistry and Health, 23, 235–240.

    Article  CAS  Google Scholar 

  • Garr, J. J. (1980). Extraction, reclamation and after use at gravel quarries near Canterbury, Kent. Environmental Geochemistry and Health, 3, 124–144.

    Google Scholar 

  • Hem, J. D. (1989). Study and interpretation of the chemical characteristics of natural water (USGS Water-Supply Paper 2254). (Reston: USGS).

  • Langmuir, D., Chrostowski, P., Vigneault, B., & Chaney, R. (2005). Issue paper on the environmental chemistry of metals (US EPA Risk Assessment Forum, Contract 68-C-02-060). (Washington: US EPA).

  • Markiewicz-Patkowska, J., Hursthouse, A., & Przybyla-Kij, H. (2005). The interaction of heavy metals with urban soils: Sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit. Environment International, 31, 513–521.

    Article  CAS  Google Scholar 

  • Mirecki, J. E., & Parks, W. (1993). Leachate geochemistry at a municipal landfill, Memphis, Tennessee. Ground Water, 32(3), 390–398.

    Article  Google Scholar 

  • Navarro, A., Rosell, A., Villanueva, J., & Grimalt, J. O. (1991). Monitoring of hazardous waste dumps by the study of metals and solvent-soluble organic chemicals. Chemosphere, 22(9–10), 913–928.

    Article  CAS  Google Scholar 

  • Navarro, A., & Font, X. (1993). Discriminating different sources of groundwater contamination caused by industrial wastes in the Besós river basin, Barcelona, Spain. Applied Geochemistry, Suppl. Issue, 2, 277–279.

    Article  CAS  Google Scholar 

  • Navarro, A., Font, X., Carmona, J. Ma, Casas, A., Pinto, V., Rivero, L., Cortés, A., Tapies, J. C., & Folch, M. (2001). Relacions entre els nivells de metalls pesants en els sòls i les aigües subterrànies a la conca mitjana del riu Besòs. Dossier Agraris, 7, 37–52.

    Google Scholar 

  • Navarro, A., Chimenos, J.M., Muntaner, D., & Fernández, I. (2006). Permeable reactive barriers for the removal of heavy metals: Lab-scale experiments with low-grade magnesium oxide. Ground Water Monitoring & Remediation, 26(4), 142–152.

    Article  CAS  Google Scholar 

  • Nicholson, R. V., Cherry, J. A., & Reardon, E. J. (1983). Migration of contaminants in groundwater at a landfill: A case study. 6. Hydrogeochemistry. Journal of Hydrology, 63, 131–176.

    Article  CAS  Google Scholar 

  • Noguera, J. F., Rivero, L., Font, X., & Navarro, A. (2002). Simultaneous use of geochemical and geophysical methods to characterise abandoned landfills. Environmental Geology, 41, 898–905.

    Article  CAS  Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2): A computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations. USGS Water-Resources Investigations Report, 326, 99–4259.

  • Postma, D. (1985). Concentration of Mn and separation from Fe in sediments: I. kinetics and stoichiometry of the reaction between birnessite and dissolved Fe II at 10 °C. Geochimica et Cosmochima Acta, 49 1023–1033.

    Google Scholar 

  • Rate, A. W., Lee, K. M., & French, P. A. (2004). Application of biosolids in mineral sands mine rehabilitation: use of stockpiled topsoil decreases trace element uptake by plants. Bioresource Technology, 91, 223–231.

    Article  CAS  Google Scholar 

  • Relic, D., Dordevic, D., Popovic, A., & Blagojevic, T. (2005). Speciations of trace metals in the Danube alluvial sediments within an oil refinery. Environmental International, 31, 661–669.

    Article  CAS  Google Scholar 

  • Thornton, S. F., Tellam, J. H., & Lerner, D. N. (2000). Attenuation of landfill leachate by UK Triassic sandstone aquifer materials. I. Fate of inorganic pollutants in laboratory columns. Journal of Contaminant Hydrology, 43, 327–354.

    Article  CAS  Google Scholar 

  • USEPA (1991). Description and sampling of contaminated soils: A field pocket guide (EPA 625/12-91-002). (Washington: US EPA).

  • Villanueva, J., Rossell, A., Grimalt, J., & Navarro, A. (1991). Chemical characterization of polycyclic aromatic hydrocarbon mixtures in uncontrolled hazardous waste dumps. Chemosphere, 22(3–4), 317–326.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of the Consortium for the Defense of the Besòs River Basin (Consorci per a la Defensa de la Conca del Besòs, CDBesòs) and the Catalan Water Board (Agència Catalana de l’Aigua, ACA), which supplied data for the study. The research that this report is based on was funded by contracts C-4934 and C-6157 between the Technical University of Catalonia (Universitat Politècnica de Catalunya, UPC) and CDBesòs. Additional information was provided by the University of Barcelona (Universitat de Barcelona, UB), which funded the ICP-MS analyses. The authors also thank two anonymous reviewers for their constructive criticism of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Navarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarro, A., Carbonell, M. Assessment of groundwater contamination caused by uncontrolled dumping in old gravel quarries in the Besòs aquifers (Barcelona, Spain). Environ Geochem Health 30, 273–289 (2008). https://doi.org/10.1007/s10653-007-9123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-007-9123-z

Keywords

Navigation